Subcritical crack growth, surface energy, fracture toughness, stick-slip and embrittlement

It is proposed that the difficulties encountered with the meaning of subcritical crack growth arose from a misunderstanding of the Griffith equation. This equation is G=2γ for an equilibrium crack (stable or unstable) where γ is the intrinsic surface energy. When G>2γ the crack has a velocity v depending on the crack extension force G−2γ, even in a vacuum, and the following equation, well verified for adherence of elastomers, G−2γ=2γφT(v) where φT(v) is related to viscoelastic losses or internal friction at the crack tip, is generalized to other materials. At a critical speed vc, dφ/dv becomes negative; as a negative branch cannot be observed the velocity jumps to high values on a second positive branch, so that G=Gc is a criterion for crack speed discontinuity, not the Griffith criterion. The multiplicative factor 2γ on the right-hand side accounts for the shift of the v-K curves with environment. No stress corrosion is needed to explain subcritical crack growth. Subcritical crack growth in glasses and ceramics and velocity jump in brittle polymers are shown to agree with this proposal. This model can also explain stick-slip motion when a mean velocity is imposed in the negative branch. Occurrence of velocity jump or stick-slip depends on the geometry tested and the stiffness of the apparatus. A second kind of stick-slip associated with cavitation in liquid-filled cracks is discussed. When the surrounding medium can reach the crack tip and reduce the surface energy, even at the critical speed vc, the critical strain energy release rate Gc is reduced in the same proportion as γ, and a loading which would have given subcritical growth will give a catastrophic failure. Reduction of surface energy in the Rehbinder effect and in embrittlement by segregation is discussed. Finally, the evolution of ideas concerning the Irwin-Orowan formula and fracture toughness is examined.

[1]  G. Weidmann,et al.  Transition from slow to fast crack propagation in PMMA , 1976 .

[2]  T. Michalske,et al.  Dynamic Effects of Liquids on Crack Growth Leading to Catastrophic Failure in Glass , 1980 .

[3]  L. Lee Adhesion and Adsorption of Polymers , 1980 .

[4]  M. I. Hakeem,et al.  Effect of environment on stability of cracking in brittle polymers , 1978 .

[5]  R. E. Mould Strength and Static Fatigue of Abraded Glass Under Controlled Ambient Conditions: III, Aging of Fresh Abrasions , 1960 .

[6]  A. Atkins,et al.  Crack propagation in ceramic materials under cyclic loading conditions , 1975 .

[7]  A. Gent,et al.  Adhesion of viscoelastic materials to rigid substrates. III. Energy criterion for failure , 1971 .

[8]  E. D. Hondeos,et al.  Cohesion margin of copper , 1974 .

[9]  D. Kaelble,et al.  Theory and analysis of peel adhesion: Rate-temperature dependence of viscoelastic interlayers , 1964 .

[10]  L. J. Broutman,et al.  Fracture surface work measurements on glassy polymers by a cleavage technique. I. Effects of temperature , 1965 .

[11]  E. D. Shchukin Environmentally Induced Lowering of Surface Energy and the Mechanical Behavior of Solids , 1977 .

[12]  G. Piero,et al.  Unilateral Problems in Structural Analysis , 1985 .

[13]  P. L. Pratt,et al.  Measurement of the dynamic fracture toughness of polymethylmethacrylate by high-speed photography , 1974 .

[14]  B. Lawn,et al.  Acid‐Enhanced Crack Initiation in Glass , 1982 .

[15]  S. Mostovoy,et al.  Stress Corrosion Cracking of Adhesive Joints , 1971 .

[16]  R. Christensen,et al.  A theory of crack growth in viscoelastic materials , 1981 .

[17]  J. Williams Visco-elastic and thermal effects on crack growth in PMMA , 1972 .

[18]  K. W. Thomson,et al.  The stability of fracture in epoxy resins , 1979 .

[19]  J. A. Greenwood,et al.  The mechanics of adhesion of viscoelastic solids , 1981 .

[20]  D. Maugis,et al.  Fracture mechanics and the adherence of viscoelastic bodies , 1978 .

[21]  Anthony G. Evans,et al.  Slow crack growth in brittle materials under dynamic loading conditions , 1974 .

[22]  M. Seah Grain boundary segregation and the T-t dependence of temper brittleness , 1977 .

[23]  T. Baker,et al.  The Effect of Water on the Strength of Glass , 1946 .

[24]  J. Newman,et al.  Fluid flow in a propagating crack , 1974, Metallurgical and Materials Transactions B.

[25]  R. Young,et al.  Crack propagation and arrest in epoxy resins , 1976 .

[26]  J. W. Obreimoff The splitting strength of mica , 1930 .

[27]  L. Russell,et al.  Slow crack growth in ceramic materials at elevated temperatures , 1975 .

[28]  M. Seah,et al.  Kinetics of surface segregation , 1977 .

[29]  J. E. Field,et al.  Fracture surface energies using laser-induced cracks , 1973 .

[30]  I. N. Sneddon The distribution of stress in the neighbourhood of a crack in an elastic solid , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  R. Davidge,et al.  The effective surface energy of brittle materials , 1968 .

[32]  M. Seah Adsorption-induced interface decohesion , 1980 .

[33]  H. K. Livingston,et al.  Adsorption and the Energy Changes1 at Crystalline Solid Surfaces , 1942 .

[34]  K. Kendall Shrinkage and peel strength of adhesive joints , 1973 .

[35]  A. Adamson Physical chemistry of surfaces , 1960 .

[36]  Edwin R. Fuller,et al.  Micromechanisms of crack growth in ceramics and glasses in corrosive environments , 1980 .

[37]  Richard Schapery,et al.  A theory of crack initiation and growth in viscoelastic media , 1975 .

[38]  J. L. Gardon Peel adhesion. I. Some phenomenological aspects of the test , 1963 .

[39]  Sheldon M. Wiederhorn,et al.  Influence of Water Vapor on Crack Propagation in Soda‐Lime Glass , 1967 .

[40]  M. I. Hakeem,et al.  Unstable crack propagation—a fractographic study using PMMA in liquid environments , 1979 .

[41]  E. D. Hondros,et al.  Atomistic Mechanisms of Intergranular Embrittlement , 1983 .

[42]  D. Maugis,et al.  Tackiness of Elastomers , 1981 .

[43]  H. Johnson,et al.  Fracture of Glass in Vacuum , 1974 .

[44]  A. Evans,et al.  Fracture Mechanics of Ceramics , 1986 .

[45]  Junn Nakayama,et al.  Direct Measurement of Fracture Energies of Brittle Heterogeneous Materials , 1965 .

[46]  V. Vítek,et al.  The effects of segregated impurities on intergranular fracture energy , 1979 .

[47]  J. P. Berry,et al.  Surface Characteristics of Fractured Poly(methyl methacrylate) , 1960, Nature.

[48]  Determination of the surface energy of naphthalene crystals by cleavage method , 1972 .

[49]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[50]  G. R. Irwin,et al.  Interpretation of Fracture Markings , 1950 .

[51]  T. Baker,et al.  Fatigue of Glass under Static Loads , 1946 .

[52]  D. Aubrey,et al.  Failure mechanisms in peeling of pressure-sensitive adhesive tape , 1969 .

[53]  E. Orowan The Fatigue of Glass Under Stress , 1944, Nature.

[54]  Brian R. Lawn,et al.  Relation between multiregion crack growth and dynamic fatigue of glass using indentation flaws , 1983 .

[55]  L. R. F. Rose,et al.  The stress-wave radiation from growing cracks , 1981, International Journal of Fracture.

[56]  J. Field Fracture of Solids , 1964 .

[57]  Martin P. Seah,et al.  Interface adsorption, embrittlement and fracture in metallurgy: A review , 1975 .

[58]  B. Lawn,et al.  Electron microscopy of microcracking about indentations in aluminium oxide and silicon carbide , 1975 .

[59]  A. Westwood SURFACE-SENSITIVE MECHANICAL PROPERTIES , 1964 .

[60]  D. Maugis,et al.  Adhesive contact of sectionally smooth-ended punches on elastic half-spaces: theory and experiment , 1983 .

[61]  E. Orowan,et al.  Fracture and strength of solids , 1949 .

[62]  R. Young,et al.  Failure of brittle polymers by slow crack growth , 1975 .

[63]  S. Wiederhorn,et al.  Crack Healing in Glass , 1970 .

[64]  Y. Mai On the environmental fracture of polymethylmethacrylate , 1975 .

[65]  S. Pearson,et al.  Fatigue of mineral glass under static and cyclic loading , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[66]  B. Lawn,et al.  A simulated crack experiment illustrating the energy balance criterion , 1968 .

[67]  J. G. Williams,et al.  Temperature effects in the fracture of PMMA , 1974 .

[68]  D. Hasselman,et al.  The Griffith Criterion and the Reversible and Irreversible Fracture of Brittle Materials , 1974 .

[69]  S. Wiederhorn,et al.  Stress Corrosion and Static Fatigue of Glass , 1970 .

[70]  R. Latanision,et al.  Atomistics of fracture , 1970 .

[71]  E. D. Hondros,et al.  The influence of phosphorus in dilute solid solution on the absolute surface and grain boundary energies of iron , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[72]  A. Gent,et al.  Effect of Wetting Liquids on the Strength of Adhesion of Viscoelastic Material , 1972 .

[73]  F. C. Roesler,et al.  Brittle Fractures near Equilibrium , 1956 .

[74]  J. G. Williams,et al.  Environmental crack and craze growth phenomena in polymers , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[75]  J. Benbow Stable Crack Propagation in Plastics , 1961 .

[76]  Griffith Fracture Equation - An Experimental Test. , 1975 .

[77]  Hans Dannenberg Measurement of adhesion by a blister method , 1961 .

[78]  M. H. Kamdar,et al.  Concerning liquid metal embrittlement, particularly of zinc monocrystals by mercury , 1963 .

[79]  E. D. Hondros,et al.  Grain boundary segregation , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[80]  A. Bailey Friction and Adhesion of Clean and Contaminated Mica Surfaces , 1961 .

[81]  Anthony G. Evans,et al.  A method for evaluating the time-dependent failure characteristics of brittle materials — and its application to polycrystalline alumina , 1972 .

[82]  A. Roberts,et al.  The adhesion and friction of smooth rubber surfaces , 1975 .

[83]  S. Wiederhorn Moisture assisted crack growth in ceramics , 1968 .

[84]  Ilya Prigogine,et al.  Structure , stabilité et fluctuations , 1971 .

[85]  D. H. Kaelble,et al.  Peel Adhesion: Influence of Surface Energies and Adhesive Rheology , 1969 .

[86]  W. Rostoker,et al.  Embrittlement by Liquid Metals , 1960 .

[87]  J. Rice,et al.  On the thermodynamics of adsorption at interfaces as it influences decohesion , 1980 .

[88]  T. L. Johnston,et al.  Crack propagation in a liquid metal environment , 1963 .

[89]  C. F. Old,et al.  Liquid metal embrittlement , 1979 .

[90]  Sheldon M. Wiederhorn,et al.  Fracture Surface Energy of Glass , 1969 .

[91]  Brian R. Lawn,et al.  Atomically sharp cracks in brittle solids: an electron microscopy study , 1980 .

[92]  John R. Rice,et al.  Thermodynamics of the quasi-static growth of Griffith cracks , 1978 .

[93]  H. R. Tipler,et al.  INTERFACIAL ENERGY AND COMPOSITION IN METALS AND ALLOYS , 1963 .

[94]  E. D. Hondros,et al.  The theory of grain boundary segregation in terms of surface adsorption analogues , 1977 .

[95]  H. Abe,et al.  Crack Stability in the Work‐of‐Fracture Test: Refractory Applications , 1981 .

[96]  A. Evans,et al.  A simple method for studying slow crack growth. , 1973 .

[97]  M. Seah Segregation and the strength of grain boundaries , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[98]  Failure Prediction in Structural Ceramics Using Acoustic Emission , 1973 .

[99]  Sheldon M. Wiederhorn,et al.  Subcritical Crack Growth in Ceramics , 1974 .

[100]  M. Barquins Influence of the stiffness of testing machines on the adherence of elastomers , 1983 .

[101]  J. Ferry Viscoelastic properties of polymers , 1961 .

[102]  D. McLean,et al.  Grain boundaries in metals , 1958 .

[103]  L. Russell,et al.  Acoustic emission and crack propagation in polycrystalline alumina , 1974 .

[104]  V. Vítek,et al.  A microscopic theory of brittle fracture in deformable solids: A relation between ideal work to fracture and plastic work , 1980 .

[105]  A. Gent Adhesion of viscoelastic materials to rigid substrates. II. Tensile strength of adhesive joints , 1971 .

[106]  D. Maugis,et al.  Fracture Mechanics and Adherence of Viscoelastic Solids , 1980 .

[107]  R. J. Charles,et al.  Dynamic Fatigue of Glass , 1958 .

[108]  F. Johnson,et al.  Molecular kinetics and the fracture of PMMA , 1972 .

[109]  Effect of Alcohols on Crack Propagation in Glass , 1974 .

[110]  R. Young,et al.  Crack propagation in and fractography of epoxy resins , 1979 .

[111]  R. Young,et al.  Failure of brittle polymers by slow crack growth , 1975 .

[112]  Richard Schapery,et al.  A theory of crack initiation and growth in viscoelastic media , 1975 .

[113]  M. H. Kamdar,et al.  Embrittlement by liquid metals , 1973 .

[114]  Ilya Prigogine,et al.  Surface tension and adsorption , 1966 .

[115]  A. Roberts,et al.  Looking at Rubber Adhesion , 1979 .

[116]  T. R. Wilshaw,et al.  Acoustic emission in brittle solids , 1976 .

[117]  Shigeki Sakaguchi,et al.  Delayed failure in silica glass , 1982 .

[118]  J. Georges Microscopic Aspects of Adhesion and Lubrication , 1982 .

[119]  T. Michalske,et al.  A Molecular Mechanism for Stress Corrosion in Vitreous Silica , 1983 .

[120]  H. Tattersall,et al.  The work of fracture and its measurement in metals, ceramics and other materials , 1966 .

[121]  A. Gent,et al.  Adhesion of viscoelastic materials to rigid substrates , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[122]  Robert J. Young,et al.  Stability of crack propagation in epoxy resins , 1977 .

[123]  Richard M. Christensen,et al.  A rate-dependent criterion for crack growth , 1979 .

[124]  J. R. Varner,et al.  Fracture Marks Associated with Transition‐Region Behavior of Slow Cracks in Glass , 1971 .