Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system

The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts.

[1]  Alexander Ignatov,et al.  Implementation of the Community Radiative Transfer Model in Advanced Clear‐Sky Processor for Oceans and validation against nighttime AVHRR radiances , 2009 .

[2]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[3]  Brian Ward,et al.  Near‐surface ocean temperature , 2006 .

[4]  B. Franz,et al.  Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach , 2007 .

[5]  J. Derber,et al.  Introduction of the GSI into the NCEP Global Data Assimilation System , 2009 .

[6]  E. Mcclain,et al.  A correction for Saharan dust effects on satellite sea surface temperature measurements , 1992 .

[7]  J. Kennedy,et al.  A global climatology of the diurnal variations in sea‐surface temperature and implications for MSU temperature trends , 2007 .

[8]  M. Rienecker,et al.  The GEOS-iODAS: Description and Evaluation , 2012 .

[9]  C. Fairall,et al.  Improved Oceanic Cool-Skin Corrections Using a Refined Solar Penetration Model , 2005 .

[10]  John Derber,et al.  The Use of TOVS Cloud-Cleared Radiances in the NCEP SSI Analysis System , 1998 .

[11]  M. Querry,et al.  Wedge shaped cell for highly absorbent liquids: infrared optical constants of water. , 1989, Applied optics.

[12]  Andrea Molod,et al.  The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna , 2012 .

[13]  Jean-Philippe Duvel,et al.  An Analysis of Tropical Ocean Diurnal Warm Layers , 2009 .

[14]  Yoshimi Kawai,et al.  Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review , 2007 .

[15]  Peter J. Minnett,et al.  Radiometric measurements of ocean surface thermal variability , 2008 .

[16]  J. J. Simpson,et al.  The temperature difference across the cool skin of the ocean , 1981 .

[17]  F. Molteni,et al.  622 Implementation of an ocean mixed layer model in IFS , 2010 .

[18]  Ronald M. Errico,et al.  Improving Incremental Balance in the GSI 3DVAR Analysis System , 2009 .

[19]  Gary B. Brassington,et al.  Progress and challenges in short- to medium-range coupled prediction , 2015 .

[20]  C. Donlon,et al.  Diurnal signals in satellite sea surface temperature measurements , 2003 .

[21]  Shian-Jiann Lin,et al.  Finite-volume transport on various cubed-sphere grids , 2007, J. Comput. Phys..

[22]  Ricardo Todling,et al.  The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0 , 2008 .

[23]  M. Filipiak,et al.  A statistical model for sea surface diurnal warming driven by numerical weather prediction fluxes and winds , 2010 .

[24]  William J. Emery,et al.  Error characterization of infrared and microwave satellite sea surface temperature products for merging and analysis , 2008 .

[25]  Thomas M. Smith,et al.  Daily High-Resolution-Blended Analyses for Sea Surface Temperature , 2007 .

[26]  Adrian Hines,et al.  Assessing a New Coupled Data Assimilation System Based on the Met Office Coupled Atmosphere–Land–Ocean–Sea Ice Model , 2015 .

[27]  Fuzhong Weng,et al.  JCSDA Community Radiative Transfer Model (CRTM) : version 1 , 2006 .

[28]  Jean-Noël Thépaut,et al.  Impact of Scatterometer Surface Wind Data in the ECMWF Coupled Assimilation System , 2016 .

[29]  J. R. Eyre,et al.  Observation bias correction schemes in data assimilation systems: a theoretical study of some of their properties , 2016 .

[30]  C. Donlon,et al.  The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system , 2012 .

[31]  Lawrence L. Takacs,et al.  Data Assimilation Using Incremental Analysis Updates , 1996 .

[32]  Michael A. Brunke,et al.  Integration of a prognostic sea surface skin temperature scheme into weather and climate models , 2008 .

[33]  E. F. Bradley,et al.  Cool‐skin and warm‐layer effects on sea surface temperature , 1996 .

[34]  X. Zeng,et al.  A prognostic scheme of sea surface skin temperature for modeling and data assimilation , 2005 .

[35]  P. M. Saunders,et al.  The Temperature at the Ocean-Air Interface , 1967 .

[36]  Kohtaro Hosoda,et al.  A review of satellite-based microwave observations of sea surface temperatures , 2010 .

[37]  J. Ohlmann,et al.  Ocean Radiant Heating in Climate Models , 2003 .

[38]  J. Thepaut,et al.  Toward a Consistent Reanalysis of the Climate System , 2014 .

[39]  Ecmwf Newsletter,et al.  EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS , 2004 .

[40]  William J. Emery,et al.  Evaluation of the relative performance of sea surface temperature measurements from different types of drifting and moored buoys using satellite-derived reference products , 2012 .

[41]  R. Koster,et al.  Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System , 2016 .

[42]  David A. Siegel,et al.  Ocean Radiant Heating. Part II: Parameterizing Solar Radiation Transmission through the Upper Ocean , 2000 .

[43]  C. Donlon,et al.  Toward Improved Validation of Satellite Sea Surface Skin Temperature Measurements for Climate Research , 2002 .

[44]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[45]  Peter J. Minnett,et al.  The Global Ocean Data Assimilation Experiment High-resolution Sea Surface Temperature Pilot Project , 2007 .

[46]  Fuzhong Weng,et al.  Comparison of two transmittance algorithms in the community radiative transfer model: Application to AVHRR , 2012 .

[47]  Michele M. Rienecker,et al.  Decadal prediction skill in the GEOS-5 forecast system , 2013, Climate Dynamics.

[48]  A. Ignatov,et al.  In situ SST Quality Monitor (iQuam) , 2014 .

[49]  R. Lukas,et al.  Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool , 1997 .

[50]  Christopher J. Merchant,et al.  Saharan dust in nighttime thermal imagery: Detection and reduction of related biases in retrieved sea surface temperature , 2006 .

[51]  Bruce D. McKenzie,et al.  Operational Processing of Satellite Sea Surface Temperature Retrievals at the Naval Oceanographic Office , 1998 .

[52]  Peter A. E. M. Janssen,et al.  Refinements to a prognostic scheme of skin sea surface temperature , 2010 .

[53]  Fuzhong Weng,et al.  On water vapor Jacobian in fast radiative transfer model , 2010 .

[54]  J. Cummings,et al.  Inclusion of Sea-Surface Temperature Variation in the U.S. Navy Ensemble-Transform Global Ensemble Prediction System , 2012 .

[55]  Peter J. Minnett,et al.  Profiles of ocean surface heating (POSH): A new model of upper ocean diurnal warming , 2009 .

[56]  Peter J. Webster,et al.  Clouds, Radiation, and the Diurnal Cycle of Sea Surface Temperature in the Tropical Western Pacific , 1996 .

[57]  Matthew J. Martin,et al.  Development of a variational data assimilation system for the diurnal cycle of sea surface temperature , 2013 .

[58]  D. Dee,et al.  Variational bias correction of satellite radiance data in the ERA‐Interim reanalysis , 2009 .

[59]  Kristian Mogensen,et al.  A coupled data assimilation system for climate reanalysis , 2016 .