PEDAMACS: power efficient and delay aware medium access protocol for sensor networks

PEDAMACS is a Time Division Multiple Access (TDMA) scheme that extends the common single hop TDMA to a multihop sensor network, using a high-powered access point to synchronize the nodes and to schedule their transmissions and receptions. The protocol first enables the access point to gather topology (connectivity) information. A scheduling algorithm then determines when each node should transmit and receive data, and the access point announces the transmission schedule to the other nodes. The performance of PEDAMACS is compared to existing protocols based on simulations in TOSSIM, a simulation environment for TinyOS, the operating system for the Berkeley sensor nodes. For the traffic application we consider, the PEDAMACS network provides a lifetime of several years compared to several months and days based on random access schemes with and without sleep cycles, respectively, making sensor network technology economically viable.

[1]  Jerzy Kocinski Phase transition phenomena , 1983 .

[2]  Keshab K. Parhi,et al.  Distributed scheduling of broadcasts in a radio network , 1989, IEEE INFOCOM '89, Proceedings of the Eighth Annual Joint Conference of the IEEE Computer and Communications Societies.

[3]  T. G. Robertazzi,et al.  Layer net: a new self-organizing network protocol , 1990, IEEE Conference on Military Communications.

[4]  K.-W. Hung,et al.  Fair and efficient transmission scheduling in multihop packet radio networks , 1992, [Conference Record] GLOBECOM '92 - Communications for Global Users: IEEE.

[5]  Mario Gerla,et al.  Multicluster, mobile, multimedia radio network , 1995, Wirel. Networks.

[6]  C. D. Young,et al.  USAP: a unifying dynamic distributed multichannel TDMA slot assignment protocol , 1996, Proceedings of MILCOM '96 IEEE Military Communications Conference.

[7]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[8]  A. M. Abdullah,et al.  Wireless lan medium access control (mac) and physical layer (phy) specifications , 1997 .

[9]  Suresh Singh,et al.  PAMAS—power aware multi-access protocol with signalling for ad hoc networks , 1998, CCRV.

[10]  Neeli R. Prasad,et al.  A state-of-the-art of HIPERLAN/2 , 1999, Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No.99CH36324).

[11]  Piyush Gupta,et al.  Critical Power for Asymptotic Connectivity in Wireless Networks , 1999 .

[12]  Paul J.M. Havinga,et al.  Energy-efficient TDMA medium access control protocol scheduling , 2000 .

[13]  Robert Szewczyk,et al.  System architecture directions for networked sensors , 2000, ASPLOS IX.

[14]  Jaap C. Haartsen,et al.  The Bluetooth radio system , 2000, IEEE Personal Communications.

[15]  Wendi Heinzelman,et al.  Energy-efficient communication protocol for wireless microsensor networks , 2000, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.

[16]  Gregory J. Pottie,et al.  Protocols for self-organization of a wireless sensor network , 2000, IEEE Wirel. Commun..

[17]  Ravi Prakash,et al.  Max-min d-cluster formation in wireless ad hoc networks , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[18]  Jan M. Rabaey,et al.  Low power distributed MAC for ad hoc sensor radio networks , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[19]  Elif Uysal-Biyikoglu,et al.  Energy-efficient transmission over a wireless link via lazy packet scheduling , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[20]  Stephen B. Wicker,et al.  Phase transition phenomena in wireless ad hoc networks , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[21]  David E. Culler,et al.  A transmission control scheme for media access in sensor networks , 2001, MobiCom '01.

[22]  R. Rozovsky,et al.  SEEDEX: a MAC protocol for ad hoc networks , 2001, MobiHoc '01.

[23]  Deborah Estrin,et al.  An energy-efficient MAC protocol for wireless sensor networks , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[24]  Pradip K. Srimani,et al.  Fault tolerant distributed coloring algorithms that stabilize in linear time , 2002, Proceedings 16th International Parallel and Distributed Processing Symposium.

[25]  Elif Uysal-Biyikoglu,et al.  Energy-efficient packet transmission over a wireless link , 2002, TNET.

[26]  Mani B. Srivastava,et al.  Optimizing Sensor Networks in the Energy-Latency-Density Design Space , 2002, IEEE Trans. Mob. Comput..

[27]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[28]  P. R. Kumar,et al.  Power Control in Ad-Hoc Networks: Theory, Architecture, Algorithm and Implementation of the COMPOW Protocol , 2002 .

[29]  Sinem Coleri Ergen,et al.  Lifetime analysis of a sensor network with hybrid automata modelling , 2002, WSNA '02.

[30]  Koen Langendoen,et al.  An adaptive energy-efficient MAC protocol for wireless sensor networks , 2003, SenSys '03.

[31]  Katia Obraczka,et al.  Energy-efficient collision-free medium access control for wireless sensor networks , 2003, SenSys '03.

[32]  David E. Culler,et al.  The mote revolution: low power wireless sensor network devices , 2004 .

[33]  Deborah Estrin,et al.  Medium access control with coordinated adaptive sleeping for wireless sensor networks , 2004, IEEE/ACM Transactions on Networking.

[34]  Andrea J. Goldsmith,et al.  Energy-constrained modulation optimization , 2005, IEEE Transactions on Wireless Communications.