Membrane metamaterial resonators with a sharp resonance: A comprehensive study towards practical terahertz filters and sensors

We investigate the resonant properties of high quality-factor membrane-based metamaterial resonators functioning in the terahertz regime. A number of factors, including the resonator geometry, dielectric loss, and most importantly the membrane thickness are found to extensively influence the resonance strength and quality factor of the sharp resonance. Further studies on the membrane thickness-dependent-sensitivity for sensing applications reveal that high quality-factor membrane metamaterials with a moderate thickness ranging from 10 to 50 μm are the most promising option towards developing realistic integrated terahertz filters and sensors.

[1]  Martin Koch,et al.  Terahertz spectroscopy on polymers: A review of morphological studies , 2011 .

[2]  David L. Kaplan,et al.  Metamaterials on Paper as a Sensing Platform , 2011, Advanced materials.

[3]  Martin Koch,et al.  Sharp Fano resonances in THz metamaterials. , 2011, Optics express.

[4]  Martin Koch,et al.  Polarization and angle independent terahertz metamaterials with high Q-factors , 2011 .

[5]  Martin Koch,et al.  Terahertz metasurfaces with high Q-factors , 2011 .

[6]  Willie J Padilla,et al.  Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications , 2010 .

[7]  Sher-Yi Chiam,et al.  Controlling metamaterial resonances via dielectric and aspect ratio effects , 2010 .

[8]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[9]  M. Koch,et al.  Asymmetric planar terahertz metamaterials. , 2010, Optics express.

[10]  Xomalin G. Peralta,et al.  Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies , 2009 .

[11]  Martin Koch,et al.  High Q-factor metasurfaces based on miniaturized asymmetric single split resonators , 2009 .

[12]  Xiang Zhang,et al.  Negative refractive index in chiral metamaterials. , 2009, Physical review letters.

[13]  Weili Zhang Resonant terahertz transmission in plasmonic arrays of subwavelength holes , 2008 .

[14]  Igal Brener,et al.  Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. , 2008, Optics express.

[15]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[16]  Willie J. Padilla,et al.  Electrically resonant terahertz metamaterials: Theoretical and experimental investigations , 2007 .

[17]  I. Hunter,et al.  On-chip pulsed terahertz systems and their applications , 2007 .

[18]  Yun-Sik Jin,et al.  Terahertz Dielectric Properties of Polymers , 2006 .

[19]  Weili Zhang,et al.  Transmission properties of terahertz pulses through subwavelength double split-ring resonators. , 2006, Optics letters.

[20]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[21]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[22]  P. D. Desai,et al.  Electrical Resistivity of Aluminum and Manganese , 1984 .