Correlation functions evolution for the Glauber dynamics in continuum

[1]  Dmitri Finkelshtein,et al.  An approximative approach for construction of the Glauber dynamics in continuum , 2009 .

[2]  Yuri G. Kondratiev,et al.  Markov evolutions and hierarchical equations in the continuum. I: one-component systems , 2007, 0707.0619.

[3]  Yuri Kondratiev,et al.  On non-equilibrium stochastic dynamics for interacting particle systems in continuum , 2008 .

[4]  Yuri Kondratiev,et al.  Nonequilibrium Glauber-type dynamics in continuum , 2006 .

[5]  Yuri G. Kondratiev,et al.  Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics , 2006 .

[6]  T. Kurtz,et al.  Spatial birth and death processes as solutions of stochastic equations , 2006, math/0605620.

[7]  Oleksandr Kutoviy,et al.  On the metrical properties of the configuration space , 2006 .

[8]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[9]  M. Rockner,et al.  Equilibrium Kawasaki dynamics of continuous particle systems , 2005, math/0503042.

[10]  Yuri Kondratiev,et al.  One-Particle Subspace of the Glauber Dynamics Generator for Continuous Particle Systems , 2004 .

[11]  M. Mück CONSTRUCTION OF METASTABLE STATES IN QUANTUM ELECTRODYNAMICS , 2004 .

[12]  E. Lytvynov,et al.  Glauber dynamics of continuous particle systems , 2003, math/0306252.

[13]  Tobias Kuna,et al.  HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY , 2002 .

[14]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[15]  Jan van Neerven,et al.  The Adjoint of a Semigroup of Linear Operators , 1992 .

[16]  Yu. M. Sukhov,et al.  Dynamical Systems of Statistical Mechanics , 1989 .

[17]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. I , 1975 .

[18]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures , 1975 .

[19]  David Ruelle,et al.  Superstable interactions in classical statistical mechanics , 1970 .

[20]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.