Multi‐time‐step and two‐scale domain decomposition method for non‐linear structural dynamics

In this paper we propose a method to improve the means of taking into account the specific time-scale and space-scale characteristics in time-dependent non-linear problems. This method enables the use of arbitrary time steps in each subdomain: these can be coupled by prescribing continuous velocities at the interfaces, which are modelled using a dual Schur formulation. For certain subdomains, in space, we adopt a two-scale resolution technique inspired by the multigrid methods in order to obtain the part of the solution related to small variation lengths on a refined scale and the part corresponding to large variation lengths on a coarse scale. For non-linear problems, we propose an algorithm with a single iteration level to deal with both the non-linear equilibrium and the two space scales thanks to a two-grid method in which the relaxation steps are performed using a non-linear, preconditioned conjugate gradient algorithm. Finally, we present an example which demonstrates the feasibility of the method. Copyright © 2003 John Wiley & Sons, Ltd.

[1]  Jacob Fish,et al.  An efficient multilevel solution scheme for large scale non-linear systems , 1995 .

[2]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[3]  Carlos A. Felippa,et al.  DIRECT TIME INTEGRATION METHODS IN NONLINEAR STRUCTURAL DYNAMICS , 1979 .

[4]  Alain Combescure,et al.  A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis , 2002 .

[5]  Thomas J. R. Hughes,et al.  Implicit-explicit finite elements in nonlinear transient analysis , 1979 .

[6]  Alain Combescure,et al.  Multi-time-step explicit–implicit method for non-linear structural dynamics , 2001 .

[7]  Chandrajit L. Bajaj,et al.  NURBS approximation of surface/surface intersection curves , 1994, Adv. Comput. Math..

[8]  Yan Zhang,et al.  Multiple scale finite element methods , 1991 .

[9]  Manolis Papadrakakis,et al.  Preconditioned conjugate‐ and secant‐Newton methods for non‐linear problems , 1989 .

[10]  Jacob Fish,et al.  Multigrid method for periodic heterogeneous media Part 1: Convergence studies for one-dimensional case , 1995 .

[11]  I. D. Parsons,et al.  A parallel multigrid method for history-dependent elastoplasticity computations , 1993 .

[12]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[13]  C. Farhat,et al.  A scalable Lagrange multiplier based domain decomposition method for time‐dependent problems , 1995 .

[14]  T. Belytschko,et al.  Stability of an explicit multi-time step integration algorithm for linear structural dynamics equations , 1996 .

[15]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[16]  J. Hall,et al.  The multigrid method in solid mechanics: Part I—Algorithm description and behaviour , 1990 .

[17]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[18]  Ted Belytschko,et al.  Mixed-time implicit-explicit finite elements for transient analysis , 1982 .

[19]  J. Fish,et al.  Multi-grid method for periodic heterogeneous media Part 2: Multiscale modeling and quality control in multidimensional case , 1995 .

[20]  W. Daniel A study of the stability of subcycling algorithms in structural dynamics , 1998 .

[21]  Thomas J. R. Hughes,et al.  A space-time formulation for multiscale phenomena , 1996 .

[22]  David Dureisseix,et al.  Comparison of multi-level approaches in domain decomposition for structural analysis , 1998 .

[23]  Ted Belytschko,et al.  Multi-Stepping Implicit-Explicit Procedures in Transient Analysis , 1984 .

[24]  Manolis Papadrakakis,et al.  Conjugate gradient algorithms in nonlinear structural analysis problems , 1986 .

[25]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[26]  Thomas J. R. Hughes,et al.  Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory , 1978 .

[27]  David F. Shanno,et al.  Conjugate Gradient Methods with Inexact Searches , 1978, Math. Oper. Res..