Tropospheric water vapour and relative humidity profiles from lidar and microwave radiometry

In this paper, we outline an iterative method to cal- ibrate the water vapour mixing ratio profiles retrieved from Raman lidar measurements. Simultaneous and co-located ra- diosonde data are used for this purpose and the calibration re- sults obtained during a radiosonde campaign in summer and autumn 2011 are presented. The water vapour profiles mea- sured during night-time by the Raman lidar and radiosondes are compared and the differences between the methodolo- gies are discussed. Then, a new approach to obtain relative humidity profiles by combination of simultaneous profiles of temperature (retrieved from a microwave radiometer) and water vapour mixing ratio (from a Raman lidar) is addressed. In the last part of this work, a statistical analysis of water vapour mixing ratio and relative humidity profiles obtained during 1 year of simultaneous measurements is presented.

[1]  B. Soden,et al.  WATER VAPOR FEEDBACK AND GLOBAL WARMING 1 , 2003 .

[2]  A. Ansmann,et al.  Experimental determination of the lidar overlap profile with Raman lidar. , 2002, Applied optics.

[3]  L. Alados-Arboledas,et al.  Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star‐and sun‐photometry , 2011 .

[4]  S. H. Melfi,et al.  Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX , 2000 .

[5]  S. H. Melfi,et al.  Observations of water vapor by ground-based microwave radiometers and Raman lidar , 1994 .

[6]  R. Rogers,et al.  A short course in cloud physics , 1976 .

[7]  David N Whiteman,et al.  New Examination of the Traditional Raman Lidar Technique II: Evaluating the Ratios for Water Vapor and Aerosols , 2013 .

[8]  Thierry Leblanc,et al.  Ground-based water vapor raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring , 2012 .

[9]  L. Alados-Arboledas,et al.  Eruption of the Eyjafjallajökull Volcano in spring 2010: Multiwavelength Raman lidar measurements of sulphate particles in the lower troposphere , 2013 .

[10]  E. Browell,et al.  Recent Lidar Technology Developments and Their Influence on Measurements of Tropospheric Water Vapor , 1994 .

[11]  Ulla Wandinger,et al.  Combined Raman lidar for aerosol, ozone, and moisture measurements , 1996 .

[12]  Albert Ansmann,et al.  Relative-humidity profiling in the troposphere with a Raman lidar. , 2002, Applied optics.

[13]  M. R. Perrone,et al.  Lidar measurements of tropospheric water vapor and aerosol profiles over southeastern Italy , 2003 .

[14]  Jiwen Fan,et al.  Effects of aerosols and relative humidity on cumulus clouds , 2007 .

[15]  Lucas Alados-Arboledas,et al.  Retrievals of precipitable water vapor using star photometry: Assessment with Raman lidar and link to sun photometry , 2012 .

[16]  Gottfried Hänel,et al.  An attempt to interpret the humidity dependencies of the aerosol extinction and scattering coefficients , 1981 .

[17]  Clemens Simmer,et al.  A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere , 2005 .

[18]  David N. Whiteman,et al.  A Comparison of Water Vapor Measurements Made by Raman Lidar and Radiosondes , 1995 .

[19]  Samuel J. Oltmans,et al.  Development and Validation of a Time-Lag Correction for Vaisala Radiosonde Humidity Measurements , 2004 .

[20]  N. Kämpfer,et al.  Diurnal variations in middle-atmospheric water vapor by ground-based microwave radiometry , 2013 .

[21]  Valentin Mitev,et al.  Humidity measurements in the free troposphere using Raman backscatter , 1988 .

[22]  Daniele Bortoli,et al.  Infrared lidar overlap function: an experimental determination. , 2010, Optics express.

[23]  F. Olmo,et al.  Extreme Saharan dust event over the southern Iberian Peninsula in september 2007: active and passive remote sensing from surface and satellite , 2009 .

[24]  L. Alados-Arboledas,et al.  One year of water vapour Raman Lidar measurements at the Andalusian Centre for Environmental Studies (CEAMA) , 2008 .

[25]  R. J. List Smithsonian Meteorological Tables , 2018, Nature.

[26]  S. H. Melfi,et al.  Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere. , 1992, Applied optics.

[27]  Lucas Alados-Arboledas,et al.  Automatic determination of the planetary boundary layer height using lidar: One‐year analysis over southeastern Spain , 2012 .

[28]  Ina Mattis,et al.  RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements. , 2012, Applied optics.

[29]  David N. Whiteman,et al.  Demonstration of Aerosol Property Profiling by Multiwavelength Lidar Under Varying Relative Humidity Conditions , 2009 .

[30]  K. Trenberth,et al.  Earth's annual global mean energy budget , 1997 .

[31]  Pablo Ristori,et al.  Development of a temperature and water vapor Raman lidar for turbulent observations , 2005, SPIE Remote Sensing.

[32]  R. Philipona,et al.  Raman Lidar for Meteorological Observations, RALMO – Part 2: Validation of water vapor measurements , 2012 .

[33]  I. Stuart McDermid,et al.  First-Year Operation of a New Water Vapor Raman Lidar at the JPL Table Mountain Facility, California , 2008 .

[34]  S. Bekki,et al.  Diurnal changes in middle atmospheric H2O and O3: Observations in the Alpine region and climate models , 2008 .

[35]  J. Goldsmith,et al.  Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. , 1997, Applied optics.

[36]  P. D. Girolamo,et al.  Raman lidar observations of a Saharan dust outbreak event: Characterization of the dust optical properties and determination of particle size and microphysical parameters , 2012 .