Research on interfacial shear properties of graphene-modified asphalt based on molecular dynamics simulation

[1]  Lixin Huang,et al.  A Modified Spring Finite Element Model for Graphene Elastic Properties Study , 2022, SSRN Electronic Journal.

[2]  H. Mang,et al.  Virtual displacement based discontinuity layout optimization , 2022, International Journal for Numerical Methods in Engineering.

[3]  Lixing Huang,et al.  Evaluation of the mechanical properties of graphene-based nanocomposites incorporating a graded interphase based on isoparametric graded finite element model , 2021, Composite Interfaces.

[4]  Xueya Wang,et al.  A micropolar peridynamic model with non-uniform horizon for static damage of solids considering different nonlocal enhancements , 2021, Theoretical and Applied Fracture Mechanics.

[5]  Hao Yu,et al.  Influence of substrate on ultrafast water transport property of multilayer graphene coatings , 2020, Nanotechnology.

[6]  Xiaoying Zhuang,et al.  On the crack opening and energy dissipation in a continuum based disconnected crack model , 2019 .

[7]  D. Rodrigue,et al.  Insights into interphase thickness characterization for graphene/epoxy nanocomposites: a molecular dynamics simulation. , 2019, Physical chemistry chemical physics : PCCP.

[8]  About Ohmpa Asphalt , 2019, Toxicology Desk Reference.

[9]  Yiming Zhang,et al.  Global cracking elements: A novel tool for Galerkin‐based approaches simulating quasi‐brittle fracture , 2019, International Journal for Numerical Methods in Engineering.

[10]  X. Zhuang,et al.  Cracking elements method for dynamic brittle fracture , 2019, Theoretical and Applied Fracture Mechanics.

[11]  Meizhu Chen,et al.  Evaluation of Thermal-Mechanical Properties of Bio-Oil Regenerated Aged Asphalt , 2018, Materials.

[12]  F. Gámiz,et al.  Mechanical and thermal properties of graphene modified asphalt binders , 2018, Construction and Building Materials.

[13]  X. Zhuang,et al.  Cracking elements: A self-propagating Strong Discontinuity embedded Approach for quasi-brittle fracture , 2018 .

[14]  Gholamali Shafabakhsh,et al.  Use of Nano SiO2 and Nano TiO2 to improve the mechanical behaviour of stone mastic asphalt mixtures , 2017 .

[15]  L. Qu,et al.  Graphene-based smart materials , 2017 .

[16]  William L. Jorgensen,et al.  LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands , 2017, Nucleic Acids Res..

[17]  Shaopeng Wu,et al.  Evaluation of thermo-mechanical properties of graphene/carbon-nanotubes modified asphalt with molecular simulation , 2017 .

[18]  Shaopeng Wu,et al.  The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt , 2017, Materials.

[19]  Guangji Xu,et al.  Molecular dynamics study of interfacial mechanical behavior between asphalt binder and mineral aggregate , 2016 .

[20]  Zhanping You,et al.  Rheological properties, low-temperature cracking resistance, and optical performance of exfoliated graphite nanoplatelets modified asphalt binder , 2016 .

[21]  Hao Wang,et al.  Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation , 2016 .

[22]  Timon Rabczuk,et al.  Crack propagation in graphene , 2015 .

[23]  Ng Choon Aun,et al.  Use of Graphene Oxide as a Bitumen Modifier: An Innovative Process Optimization Study , 2015 .

[24]  Yiming Zhang,et al.  Strong discontinuity embedded approach with standard SOS formulation: Element formulation, energy-based crack-tracking strategy, and validations , 2015 .

[25]  Liangchi Zhang,et al.  A new method for characterizing the interphase regions of carbon nanotube composites , 2014 .

[26]  Yongfeng Li,et al.  Synthesis of three-dimensional graphene from petroleum asphalt by chemical vapor deposition , 2014 .

[27]  O. Rojas,et al.  Molecular dynamics simulations of the adhesion of a thin annealed film of oleic acid onto crystalline cellulose. , 2014, Biomacromolecules.

[28]  Y. Peiyu,et al.  Static and Dynamic Mechanical Properties of Cement-Asphalt Composites , 2013 .

[29]  Pengfei Zhang,et al.  The impact of carbon nano-fiber modification on asphalt binder rheology , 2012 .

[30]  O. Rojas,et al.  The soft-confined method for creating molecular models of amorphous polymer surfaces. , 2012, The journal of physical chemistry. B.

[31]  Xingyi Zhu,et al.  Modulus prediction of asphalt concrete with imperfect bonding between aggregate–asphalt mastic , 2011 .

[32]  Armen N. Amirkhanian,et al.  Evaluation of High Temperature Rheological Characteristics of Asphalt Binder with Carbon Nano Particles , 2011 .

[33]  D. E. Aston,et al.  Synthesis of graphene paper from pyrolyzed asphalt , 2011 .

[34]  Dallas N. Little,et al.  Use of Molecular Dynamics to Investigate Self-Healing Mechanisms in Asphalt Binders , 2011 .

[35]  H. Nguyen-Xuan,et al.  A simple and robust three-dimensional cracking-particle method without enrichment , 2010 .

[36]  Ali Khodaii,et al.  Effects of nanoclay on rheological properties of bitumen binder , 2009 .

[37]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[38]  S. Bhattacharjee,et al.  Molecular Dynamics Study of Model Molecules Resembling Asphaltene-Like Structures in Aqueous Organic Solvent Systems , 2008 .

[39]  Michael L. Greenfield,et al.  Analyzing properties of model asphalts using molecular simulation , 2007 .

[40]  J. Seiber Status and Prospects , 2005 .

[41]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[42]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[43]  William L. Jorgensen,et al.  Perfluoroalkanes: Conformational Analysis and Liquid-State Properties from ab Initio and Monte Carlo Calculations , 2001 .

[44]  William L. Jorgensen,et al.  Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes , 1998 .

[45]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[46]  I. Wiehe,et al.  Asphaltenes, resins, and other petroleum macromolecules , 1996 .

[47]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules J. Am. Chem. Soc. 1995, 117, 5179−5197 , 1996 .

[48]  Maj Thijs Michels,et al.  Thermodynamic Modeling of Asphaltene Stacking , 1995 .

[49]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[50]  Xueya Wang,et al.  Image Representations of Numerical Simulations for Training Neural Networks , 2022, Computer Modeling in Engineering & Sciences.

[51]  Yong Yuan,et al.  Cracking elements method with a dissipation-based arc-length approach , 2021 .

[52]  Timon Rabczuk,et al.  Lattice orientation and crack size effect on the mechanical properties of Graphene , 2016, International Journal of Fracture.

[53]  Hans-Joachim Bungartz,et al.  Molecular Dynamics Simulation , 2015 .

[54]  Sangrak Kim,et al.  Issues on the Choice of a Proper Time Step in Molecular Dynamics , 2014 .

[55]  Daniel C. Hammerand,et al.  Modeling of graphene–polymer interfacial mechanical behavior using molecular dynamics , 2008 .

[56]  J. Tour,et al.  Buckling instabilities of octadecylamine functionalized carbon nanotubes embedded in epoxy , 2006 .