Nrf2 depletion in the context of loss-of-function Keap1 leads to mitolysosome accumulation.

[1]  A. Dinkova-Kostova,et al.  Omaveloxolone (SkyclarysTM) for patients with Friedreich's ataxia. , 2023, Trends in pharmacological sciences.

[2]  B. Stockwell,et al.  NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8 , 2023, Science advances.

[3]  A. Dinkova-Kostova,et al.  Advances and challenges in therapeutic targeting of NRF2. , 2023, Trends in pharmacological sciences.

[4]  Jennifer B Dennison,et al.  Mutational Activation of the NRF2 Pathway Upregulates Kynureninase Resulting in Tumor Immunosuppression and Poor Outcome in Lung Adenocarcinoma , 2022, Cancers.

[5]  A. Lamond,et al.  Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the type I interferon response , 2022, iScience.

[6]  Ling Zheng,et al.  Correlations among Pulmonary DJ-1, VDR and Nrf-2 in patients with Chronic Obstructive Pulmonary Disease: A Case-control Study , 2021, International journal of medical sciences.

[7]  Mark R. Marten,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1 , 2021, Autophagy.

[8]  M. Tatham,et al.  Downregulation of Keap1 Confers Features of a Fasted Metabolic State , 2020, iScience.

[9]  A. I. Rojo,et al.  Can Activation of NRF2 Be a Strategy against COVID-19? , 2020, Trends in Pharmacological Sciences.

[10]  G. Charville,et al.  AGER1 downregulation associates with fibrosis in nonalcoholic steatohepatitis and type 2 diabetes. , 2020, The Journal of clinical investigation.

[11]  K. Tew,et al.  Oxidative Stress in Cancer. , 2020, Cancer cell.

[12]  A. Carrington,et al.  A free radical. , 2020, Annual review of physical chemistry.

[13]  C. Mozzini,et al.  Oxidative stress and Nrf2 expression in peripheral blood mononuclear cells derived from COPD patients: an observational longitudinal study , 2020, Respiratory Research.

[14]  G. Ball,et al.  Semi-automated quantitation of mitophagy in cells and tissues , 2019, Mechanisms of Ageing and Development.

[15]  M. Tremblay,et al.  An antibody for analysis of autophagy induction , 2019, Nature Methods.

[16]  J. Hayes,et al.  Induction of the Antioxidant Response by the Transcription Factor NRF2 Increases Bioactivation of the Mutagenic Air Pollutant 3-Nitrobenzanthrone in Human Lung Cells. , 2019, Chemical research in toxicology.

[17]  T. Dawson,et al.  SQSTM1/p62 promotes mitochondrial ubiquitination independently of PINK1 and PRKN/parkin in mitophagy , 2019, Autophagy.

[18]  A. I. Rojo,et al.  Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases , 2019, Nature Reviews Drug Discovery.

[19]  Philip A. Sykas Design , 2019, Textile History.

[20]  R. Huganir,et al.  Mitochondrial Stasis Reveals p62-Mediated Ubiquitination in Parkin-Independent Mitophagy and Mitigates Nonalcoholic Fatty Liver Disease. , 2018, Cell metabolism.

[21]  A. I. Rojo,et al.  Transcription factor NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of LAMP2A , 2018, Autophagy.

[22]  Masayuki Yamamoto,et al.  The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. , 2018, Physiological reviews.

[23]  Yingfeng Zheng,et al.  Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells , 2018, Cell Death & Disease.

[24]  T. Burgoyne,et al.  Oxidation of Atg3 and Atg7 mediates inhibition of autophagy , 2018, Nature Communications.

[25]  H. McBride,et al.  The Keap1-Nrf2 Stress Response Pathway Promotes Mitochondrial Hyperfusion Through Degradation of the Mitochondrial Fission Protein Drp1. , 2017, Antioxidants & redox signaling.

[26]  G. Ball,et al.  Transcription factors NRF2 and HSF1 have opposing functions in autophagy , 2017, Scientific Reports.

[27]  G. Wells,et al.  Reversible Keap1 inhibitors are preferential pharmacological tools to modulate cellular mitophagy , 2017, Scientific Reports.

[28]  L. Rodríguez-Mañas,et al.  Frailty Is Associated With Lower Expression of Genes Involved in Cellular Response to Stress: Results From the Toledo Study for Healthy Aging. , 2017, Journal of the American Medical Directors Association.

[29]  J. Hiscott,et al.  Activation of Nrf2 Signaling Augments Vesicular Stomatitis Virus Oncolysis via Autophagy-Driven Suppression of Antiviral Immunity , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[30]  J. Hardy,et al.  Mitochondrial hyperpolarization in iPSC-derived neurons from patients of FTDP-17 with 10+16 MAPT mutation leads to oxidative stress and neurodegeneration , 2017, Redox biology.

[31]  G. Wells,et al.  The pharmacological regulation of cellular mitophagy. , 2017, Nature chemical biology.

[32]  A. Abramov,et al.  Functional role of mitochondrial reactive oxygen species in physiology. , 2016, Free radical biology & medicine.

[33]  Leonard D. Goldstein,et al.  Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers. , 2016, Cell reports.

[34]  M. L. de Ceballos,et al.  Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes , 2016, Autophagy.

[35]  V. Zinchenko,et al.  Intracellular pH Modulates Autophagy and Mitophagy* , 2016, The Journal of Biological Chemistry.

[36]  A. Dinkova-Kostova,et al.  The emerging role of Nrf2 in mitochondrial function , 2015, Free radical biology & medicine.

[37]  J. Vera,et al.  Glutathione Depletion Induces Spermatogonial Cell Autophagy , 2015, Journal of cellular biochemistry.

[38]  Geoff Wells,et al.  Design, Synthesis, and Evaluation of Triazole Derivatives That Induce Nrf2 Dependent Gene Products and Inhibit the Keap1-Nrf2 Protein-Protein Interaction. , 2015, Journal of medicinal chemistry.

[39]  T. P. Neufeld,et al.  Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion , 2015, Autophagy.

[40]  C. Piantadosi,et al.  Regulation of mitochondrial biogenesis and its intersection with inflammatory responses. , 2015, Antioxidants & redox signaling.

[41]  Ying Zhang,et al.  Nrf2 regulates ROS production by mitochondria and NADPH oxidase , 2015, Biochimica et biophysica acta.

[42]  H. Zetterberg,et al.  Genetic associations of Nrf2-encoding NFE2L2 variants with Parkinson’s disease – a multicenter study , 2014, BMC Medical Genetics.

[43]  G. Wells,et al.  PMI: A ΔΨm Independent Pharmacological Regulator of Mitophagy , 2014, Chemistry & biology.

[44]  Steven J. M. Jones,et al.  Comprehensive molecular profiling of lung adenocarcinoma , 2014, Nature.

[45]  J. Hayes,et al.  Susceptibility of Nrf2-Null Mice to Steatohepatitis and Cirrhosis upon Consumption of a High-Fat Diet Is Associated with Oxidative Stress, Perturbation of the Unfolded Protein Response, and Disturbance in the Expression of Metabolic Enzymes but Not with Insulin Resistance , 2014, Molecular and Cellular Biology.

[46]  J. Hayes,et al.  The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. , 2014, Trends in biochemical sciences.

[47]  Ying Zhang,et al.  Nrf2 affects the efficiency of mitochondrial fatty acid oxidation. , 2014, The Biochemical journal.

[48]  J. James,et al.  Loss of iron triggers PINK1/Parkin-independent mitophagy , 2013, EMBO reports.

[49]  P. Eaton,et al.  The PEG-switch assay: a fast semi-quantitative method to determine protein reversible cysteine oxidation. , 2013, Journal of pharmacological and toxicological methods.

[50]  Masayuki Yamamoto,et al.  Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration , 2013, Biology Open.

[51]  M. McMahon,et al.  p62/SQSTM1 Is a Target Gene for Transcription Factor NRF2 and Creates a Positive Feedback Loop by Inducing Antioxidant Response Element-driven Gene Transcription* , 2010, The Journal of Biological Chemistry.

[52]  Mihee M. Kim,et al.  The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 , 2010, Nature Cell Biology.

[53]  D. Turnbull,et al.  Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations , 2010, Brain : a journal of neurology.

[54]  Y. Nasuhara,et al.  Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. , 2008, American journal of respiratory cell and molecular biology.

[55]  J. Herman,et al.  Dysfunctional KEAP1–NRF2 Interaction in Non-Small-Cell Lung Cancer , 2006, PLoS medicine.

[56]  Mark Hannink,et al.  Keap1 Is a Redox-Regulated Substrate Adaptor Protein for a Cul3-Dependent Ubiquitin Ligase Complex , 2004, Molecular and Cellular Biology.

[57]  J. Harper,et al.  The Keap1-BTB Protein Is an Adaptor That Bridges Nrf2 to a Cul3-Based E3 Ligase: Oxidative Stress Sensing by a Cul3-Keap1 Ligase , 2004, Molecular and Cellular Biology.

[58]  Masayuki Yamamoto,et al.  Oxidative Stress Sensor Keap1 Functions as an Adaptor for Cul3-Based E3 Ligase To Regulate Proteasomal Degradation of Nrf2 , 2004, Molecular and Cellular Biology.

[59]  I. Reynolds,et al.  Spontaneous changes in mitochondrial membrane potential in single isolated brain mitochondria. , 2003, Biophysical journal.

[60]  R. Cole,et al.  Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Takeshi Noda,et al.  A ubiquitin-like system mediates protein lipidation , 2000, Nature.

[62]  A. Hołownia,et al.  Cigarette Smoke-Induced Oxidative Stress and Autophagy in Human Alveolar Epithelial Cell Line (A549 Cells). , 2019, Advances in experimental medicine and biology.

[63]  A. Abramov,et al.  Measurement of mitochondrial NADH and FAD autofluorescence in live cells. , 2015, Methods in molecular biology.