Sub-Picosecond Carrier Dynamics Explored using Automated High-Throughput Studies of Doping Inhomogeneity within a Bayesian Framework.

Bottom-up production of semiconductor nanomaterials is often accompanied by inhomogeneity resulting in a spread in electronic properties which may be influenced by the nanoparticle geometry, crystal quality, stoichiometry, or doping. Using photoluminescence spectroscopy of a population of more than 11 000 individual zinc-doped gallium arsenide nanowires, inhomogeneity is revealed in, and correlation between doping and nanowire diameter by use of a Bayesian statistical approach. Recombination of hot-carriers is shown to be responsible for the photoluminescence lineshape; by exploiting lifetime variation across the population, hot-carrier dynamics is revealed at the sub-picosecond timescale showing interband electronic dynamics. High-throughput spectroscopy together with a Bayesian approach are shown to provide unique insight in an inhomogeneous nanomaterial population, and can reveal electronic dynamics otherwise requiring complex pump-probe experiments in highly non-equilibrium conditions.

[1]  M. Wanlass,et al.  An all optical approach for comprehensive in-operando analysis of radiative and nonradiative recombination processes in GaAs double heterostructures , 2022, Light, science & applications.

[2]  E. Joselevich,et al.  Holistic Determination of Optoelectronic Properties using High-Throughput Spectroscopy of Surface-Guided CsPbBr3 Nanowires , 2022, ACS nano.

[3]  G. Situ,et al.  Far-field super-resolution ghost imaging with a deep neural network constraint , 2022, Light: Science & Applications.

[4]  P. Parkinson,et al.  Measuring, controlling and exploiting heterogeneity in optoelectronic nanowires , 2021 .

[5]  K. Dick,et al.  Unraveling the Ultrafast Hot Electron Dynamics in Semiconductor Nanowires , 2021, ACS nano.

[6]  A. Fontcuberta i Morral,et al.  Doping challenges and pathways to industrial scalability of III–V nanowire arrays , 2021 .

[7]  M. Magnusson,et al.  Calculation of Hole Concentrations in Zn Doped GaAs Nanowires , 2020, Nanomaterials.

[8]  L. Samuelson,et al.  Aerotaxy: gas-phase epitaxy of quasi 1D nanostructures , 2020, Nanotechnology.

[9]  G. Ashton,et al.  Massively parallel Bayesian inference for transient gravitational-wave astronomy , 2020, Monthly Notices of the Royal Astronomical Society.

[10]  Yuting Chen,et al.  Optical property and lasing of GaAs-based nanowires , 2020, Science China Materials.

[11]  H. Linke,et al.  Hot-carrier separation in heterostructure nanowires observed by electron-beam induced current , 2020, Nanotechnology.

[12]  Mykhaylo Lysevych,et al.  A needle in a needlestack: exploiting functional inhomogeneity for optimized nanowire lasing , 2020, OPTO.

[13]  N. Anttu,et al.  Optical far-field extinction of a single GaAs nanowire towards in situ size control of aerotaxy nanowire growth , 2020, Nanotechnology.

[14]  C. Heitzinger,et al.  A new method for selective functionalization of silicon nanowire sensors and Bayesian inversion for its parameters. , 2019, Biosensors & bioelectronics.

[15]  Roderick Murray-Smith,et al.  Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy , 2019, Nature Physics.

[16]  W. Lu,et al.  Epitaxial GaAs/AlGaAs core-multishell nanowires with enhanced photoluminescence lifetime. , 2019, Nanoscale.

[17]  Chennupati Jagadish,et al.  Optical Study of p-Doping in GaAs Nanowires for Low-Threshold and High-Yield Lasing. , 2018, Nano letters.

[18]  Colm Talbot,et al.  An introduction to Bayesian inference in gravitational-wave astronomy: Parameter estimation, model selection, and hierarchical models , 2018, Publications of the Astronomical Society of Australia.

[19]  J. Ho,et al.  GaAs Nanowires Grown by Catalyst Epitaxy for High Performance Photovoltaics , 2018, Crystals.

[20]  Haldun Akoglu,et al.  User's guide to correlation coefficients , 2018, Turkish journal of emergency medicine.

[21]  L. Samuelson,et al.  GaAs Nanowire pn-Junctions Produced by Low-Cost and High-Throughput Aerotaxy. , 2018, Nano letters.

[22]  Chennupati Jagadish,et al.  Large-Scale Statistics for Threshold Optimization of Optically Pumped Nanowire Lasers. , 2017, Nano letters.

[23]  Chennupati Jagadish,et al.  The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires , 2017 .

[24]  L. Samuelson,et al.  Recombination dynamics in aerotaxy-grown Zn-doped GaAs nanowires , 2016, Nanotechnology.

[25]  S. Watkins,et al.  Measurement of minority carrier diffusion lengths in GaAs nanowires by a nanoprobe technique , 2016 .

[26]  Philippe Caroff,et al.  Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires , 2016, Nature Communications.

[27]  J. Luther,et al.  Observation of a hot-phonon bottleneck in lead-iodide perovskites , 2015, Nature Photonics.

[28]  Laura M. Herz,et al.  Temperature‐Dependent Charge‐Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films , 2015 .

[29]  S. Louie,et al.  Ab initio study of hot electrons in GaAs , 2015, Proceedings of the National Academy of Sciences.

[30]  Mats-Erik Pistol,et al.  Zn-Doping of GaAs Nanowires Grown by Aerotaxy , 2015 .

[31]  H. Lipsanen,et al.  Effects of Zn doping on GaAs nanowires , 2014, 14th IEEE International Conference on Nanotechnology.

[32]  H. Tan,et al.  Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. , 2014, Nano letters.

[33]  N. Dasgupta,et al.  25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications , 2014, Advanced materials.

[34]  S. Reich,et al.  Type-II band alignment of zinc-blende and wurtzite segments in GaAs nanowires: A combined photoluminescence and resonant Raman scattering study , 2014 .

[35]  J. Etheridge,et al.  Enhanced minority carrier lifetimes in GaAs/AlGaAs core-shell nanowires through shell growth optimization. , 2013, Nano letters.

[36]  Venumadhav Korampally,et al.  Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches , 2013, Reports on progress in physics. Physical Society.

[37]  Chennupati Jagadish,et al.  Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy , 2013, Nanotechnology.

[38]  Andrea Cavalleri,et al.  Snapshots of non-equilibrium Dirac carrier distributions in graphene. , 2013, Nature materials.

[39]  Lars Samuelson,et al.  Continuous gas-phase synthesis of nanowires with tunable properties , 2012, Nature.

[40]  Ningfeng Huang,et al.  Electrical and optical characterization of surface passivation in GaAs nanowires. , 2012, Nano letters.

[41]  Chennupati Jagadish,et al.  Long minority carrier lifetime in Au-catalyzed GaAs/AlxGa1−xAs core-shell nanowires , 2012 .

[42]  I. Luxmoore,et al.  Effect of a GaAsP shell on the optical properties of self-catalyzed GaAs nanowires grown on silicon. , 2012, Nano letters.

[43]  H. Jiang,et al.  High quality GaAs nanowires grown on glass substrates. , 2012, Nano letters.

[44]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[45]  A. Wade,et al.  Photomodulated rayleigh scattering of single semiconductor nanowires: probing electronic band structure. , 2011, Nano letters.

[46]  Bahram Nabet,et al.  Picosecond response times in GaAs/AlGaAs core/shell nanowire-based photodetectors , 2011 .

[47]  M. Heiss,et al.  Determination of the band gap and the split-off band in wurtzite GaAs using Raman and photoluminescence excitation spectroscopy , 2011 .

[48]  Christian Leiterer,et al.  Optical properties of individual silicon nanowires for photonic devices. , 2010, ACS nano.

[49]  Qiang Huang,et al.  Physics-driven Bayesian hierarchical modeling of the nanowire growth process at each scale , 2010 .

[50]  Erik K Richman,et al.  The nanomaterial characterization bottleneck. , 2009, ACS nano.

[51]  Chennupati Jagadish,et al.  Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. , 2009, Nano letters.

[52]  Chennupati Jagadish,et al.  High Purity GaAs Nanowires Free of Planar Defects: Growth and Characterization , 2008 .

[53]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[54]  K. Koch Introduction to Bayesian Statistics , 2007 .

[55]  Chennupati Jagadish,et al.  Transient Terahertz Conductivity of GaAs Nanowires , 2007 .

[56]  Jean-Yves Tourneret,et al.  Joint Segmentation of Multivariate Astronomical Time Series: Bayesian Sampling With a Hierarchical Model , 2007, IEEE Transactions on Signal Processing.

[57]  Lyubov V. Titova,et al.  Temperature dependence of photoluminescence from single core-shell GaAs–AlGaAs nanowires , 2006 .

[58]  Richard K. Ahrenkiel,et al.  Auger recombination in heavily carbon-doped GaAs , 2001 .

[59]  R. Scholz Hole–phonon scattering rates in gallium arsenide , 1995 .

[60]  K. Köhler,et al.  Auger recombination in intrinsic GaAs , 1993 .

[61]  John F. Federici,et al.  Intervalley scattering in GaAs and InP probed by pulsed far‐infrared transmission spectroscopy , 1992 .

[62]  Shah,et al.  Initial thermalization of photoexcited carriers in GaAs studied by femtosecond luminescence spectroscopy. , 1991, Physical review letters.

[63]  Bailey,et al.  Numerical studies of femtosecond carrier dynamics in GaAs. , 1990, Physical review. B, Condensed matter.

[64]  S. Pearton,et al.  Enhanced hot‐electron photoluminescence from heavily carbon‐doped GaAs , 1990 .

[65]  Robert Mertens,et al.  Band‐gap narrowing in highly doped n‐ and p‐type GaAs studied by photoluminescence spectroscopy , 1989 .

[66]  Kash Carrier-carrier scattering in GaAs: Quantitative measurements from hot (e,A0) luminescence. , 1989, Physical review. B, Condensed matter.

[67]  John E. Cunningham,et al.  Femtosecond intervalley scattering in GaAs , 1988 .

[68]  M. G. Roe,et al.  Picosecond recombination of charged carriers in GaAs , 1986 .

[69]  David J. Erskine,et al.  Ultrafast relaxation dynamics of photoexcited carriers in GaAs and related compounds , 1985 .

[70]  M. Guzzi,et al.  Electron-hole plasma in direct-gap Ga 1 − x Al x As and k -selection rule , 1984 .

[71]  M. Cardona,et al.  Photoluminescence in heavily doped GaAs. II. Hydrostatic pressure dependence , 1980 .

[72]  M. Cardona,et al.  Luminescence above the gap in heavily Zn-doped GaAs , 1979 .

[73]  R. J. Nelson,et al.  Minority‐carrier lifetimes and internal quantum efficiency of surface‐free GaAs , 1978 .

[74]  R. Conradt,et al.  Auger recombination in GaAs and GaSb , 1977 .

[75]  K. Zschauer Auger recombination in heavily doped p-type GaAs , 1969 .

[76]  K. Brennan,et al.  Theoretical study of hole initiated impact ionization in bulk silicon and GaAs using a wave‐vector‐dependent numerical transition rate formulation within an ensemble Monte Carlo calculation , 1995 .