Short closed geodesics and the Willmore energy

We prove a lower bound on the length of closed geodesics for spherical surfaces with Willmore energy below $6\pi$. The energy threshold is optimal and there is no comparable result for surfaces of higher genus. We also discuss consequences for the injectivity radius.

[1]  K. Deckelnick,et al.  Minimising a relaxed Willmore functional for graphs subject to boundary conditions , 2015, 1503.01275.

[2]  Alexander Volkmann A monotonicity formula for free boundary surfaces with respect to the unit ball , 2014, 1402.4784.

[3]  T. Riviére,et al.  Lipschitz conformal immersions from degenerating Riemann surfaces with L2-bounded second fundamental forms , 2013 .

[4]  Fernando C. Marques,et al.  Min-Max theory and the Willmore conjecture , 2012, 1202.6036.

[5]  J. Alexander Closed Geodesics on Certain Surfaces of Revolution , 2006 .

[6]  C. Croke THE LENGTH OF A SHORTEST CLOSED GEODESIC AND THE AREA OF A 2-DIMENSIONAL SPHERE , 2006 .

[7]  C. Croke,et al.  Universal volume bounds in Riemannian manifolds , 2003, math/0302248.

[8]  E. Kuwert,et al.  Existence of minimizing Willmore surfaces of prescribed genus , 2003 .

[9]  Themistocles M. Rassias,et al.  Introduction to Riemannian Manifolds , 2001 .

[10]  T. Toro Surfaces with generalized second fundamental form in $L^2$ are Lipschitz manifolds , 1994 .

[11]  L. Simon Existence of surfaces minimizing the Willmore functional , 1993 .

[12]  E. Calabi,et al.  Simple closed geodesics on convex surfaces , 1992 .

[13]  M. Gage,et al.  Curve shortening on surfaces , 1990 .

[14]  Robert B. Kusner,et al.  Comparison surfaces for the Willmore problem , 1989 .

[15]  M. Grayson Shortening embedded curves , 1989 .

[16]  C. Croke Area and the length of the shortest closed geodesic , 1988 .

[17]  M. Gromov Filling Riemannian manifolds , 1983 .

[18]  Shing-Tung Yau,et al.  A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces , 1982 .

[19]  T. Willmore EXISTENCE AND REGULARITY OF MINIMAL SURFACES ON RIEMANNIAN MANIFOLDS , 1982 .

[20]  Paul F. Byrd,et al.  Handbook of elliptic integrals for engineers and scientists , 1971 .

[21]  J. Cheeger FINITENESS THEOREMS FOR RIEMANNIAN MANIFOLDS. , 1970 .

[22]  W. Klingenberg Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung , 1961 .

[23]  I. Holopainen Riemannian Geometry , 1927, Nature.