Short closed geodesics and the Willmore energy
暂无分享,去创建一个
[1] K. Deckelnick,et al. Minimising a relaxed Willmore functional for graphs subject to boundary conditions , 2015, 1503.01275.
[2] Alexander Volkmann. A monotonicity formula for free boundary surfaces with respect to the unit ball , 2014, 1402.4784.
[3] T. Riviére,et al. Lipschitz conformal immersions from degenerating Riemann surfaces with L2-bounded second fundamental forms , 2013 .
[4] Fernando C. Marques,et al. Min-Max theory and the Willmore conjecture , 2012, 1202.6036.
[5] J. Alexander. Closed Geodesics on Certain Surfaces of Revolution , 2006 .
[6] C. Croke. THE LENGTH OF A SHORTEST CLOSED GEODESIC AND THE AREA OF A 2-DIMENSIONAL SPHERE , 2006 .
[7] C. Croke,et al. Universal volume bounds in Riemannian manifolds , 2003, math/0302248.
[8] E. Kuwert,et al. Existence of minimizing Willmore surfaces of prescribed genus , 2003 .
[9] Themistocles M. Rassias,et al. Introduction to Riemannian Manifolds , 2001 .
[10] T. Toro. Surfaces with generalized second fundamental form in $L^2$ are Lipschitz manifolds , 1994 .
[11] L. Simon. Existence of surfaces minimizing the Willmore functional , 1993 .
[12] E. Calabi,et al. Simple closed geodesics on convex surfaces , 1992 .
[13] M. Gage,et al. Curve shortening on surfaces , 1990 .
[14] Robert B. Kusner,et al. Comparison surfaces for the Willmore problem , 1989 .
[15] M. Grayson. Shortening embedded curves , 1989 .
[16] C. Croke. Area and the length of the shortest closed geodesic , 1988 .
[17] M. Gromov. Filling Riemannian manifolds , 1983 .
[18] Shing-Tung Yau,et al. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces , 1982 .
[19] T. Willmore. EXISTENCE AND REGULARITY OF MINIMAL SURFACES ON RIEMANNIAN MANIFOLDS , 1982 .
[20] Paul F. Byrd,et al. Handbook of elliptic integrals for engineers and scientists , 1971 .
[21] J. Cheeger. FINITENESS THEOREMS FOR RIEMANNIAN MANIFOLDS. , 1970 .
[22] W. Klingenberg. Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung , 1961 .
[23] I. Holopainen. Riemannian Geometry , 1927, Nature.