High field dielectric properties of anisotropic polymer-ceramic composites

Using dielectrophoretic assembly, we create anisotropic composites of BaTiO3 particles in a silicone elastomer thermoset polymer. We study a variety of electrical properties in these composites, i.e., permittivity, dielectric breakdown, and energy density as function of ceramic volume fraction and connectivity. The recoverable energy density of these electric-field-structured composites is found to be highly dependent on the anisotropy present in the system. Our results indicate that x-y-aligned composites exhibit higher breakdown strengths along with large recoverable energy densities when compared to 0-3 composites. This demonstrates that engineered anisotropy can be employed to control dielectric breakdown strengths and nonlinear conduction at high fields in heterogeneous systems. Consequently, manipulation of anisotropy in high-field dielectric properties can be exploited for the development of high energy density polymer-ceramic systems.

[1]  L. Schadler,et al.  Polymer nanocomposite dielectrics-the role of the interface , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[2]  Jeppe C. Dyre,et al.  Universality of ac conduction in disordered solids , 2000 .

[3]  G. Blaise,et al.  Space charge in dielectrics. Energy storage and transfer dynamics from atomistic to macroscopic scale , 1998 .

[4]  D. K. Das-Gupta,et al.  Electrical properties of ceramic/polymer composites , 1990 .

[5]  C. Randall,et al.  High-and low-field dielectric characteristics of dielectrophoretically aligned ceramic/polymer nanocomposites , 2008 .

[6]  A. Bulinski,et al.  Dielectric properties of polypropylene containing nano-particles , 2005, CEIDP '05. 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2005..

[7]  Y. Ohki,et al.  Proposal of a multi-core model for polymer nanocomposite dielectrics , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[8]  H. Fröhlich,et al.  On the theory of dielectric breakdown in solids , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  K. Younsi,et al.  The future of nanodielectrics in the electrical power industry , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[10]  J. K. Nelson,et al.  The impact of nanocomposite formulations on electrical voltage endurance , 2004, Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, 2004. ICSD 2004..

[11]  Andrei A. Gusev,et al.  Voltage Breakdown in Random Composites , 2003 .

[12]  S. Yamanaka,et al.  Effect of filler concentration on electrical conductivity and ultralow-frequency dielectric properties , 1995 .

[13]  A. Beroual,et al.  Influences of degree of curing and presence of inorganic fillers on the ultimate electrical properties of epoxy-based composites: experiment and simulation , 2005 .

[14]  J. R. Laghari,et al.  Energy-storage pulsed-power capacitor technology , 1992 .

[15]  Stanislaw Gubanski,et al.  Electrical properties of filled silicone rubber , 2000 .

[16]  An investigation of the assembly conditions of dielectric particles in uncured thermoset polymers , 1994 .

[17]  Thomas B. Jones,et al.  Electromechanics of Particles , 1995 .

[18]  T. Lewis A Model for Nano-composite Polymer Dielectrics under Electrical Stress , 2007, 2007 IEEE International Conference on Solid Dielectrics.

[19]  Simon M. Rowland,et al.  Censored Weibull statistics in the dielectric breakdown of thin oxide films , 1986 .

[20]  G. Picci,et al.  Status quo and future prospects for metallized polypropylene energy storage capacitors , 2001, PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No.01CH37251).

[21]  C. Randall,et al.  Electric field processing of ferroelectric particulate ceramics and composites , 1996, ISAF '96. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics.

[22]  Th.H.G.G. Weise,et al.  High energy density capacitors , 2004, 2004 12th Symposium on Electromagnetic Launch Technology.

[23]  J. Calame Finite difference simulations of permittivity and electric field statistics in ceramic-polymer composites for capacitor applications , 2006 .

[24]  J. J. O'Dwyer,et al.  The theory of electrical conduction and breakdown in solid dielectrics , 1973 .

[25]  R. Newnham,et al.  A study of the frequency dependence of the dielectrophoretic effect in thermoset polymers , 1997 .

[26]  Clive A. Randall,et al.  Dielectric properties of dielectrophoretically assembled particulate-polymer composites , 1998 .

[27]  M. Hudis,et al.  Pulse power capability of high energy density capacitors based on a new dielectric material , 1999, Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358).

[28]  D. K. Das-Gupta,et al.  Inorganic ceramic/polymer ferroelectric composite electrets , 1996 .

[29]  S. Boggs,et al.  High field effects in solid dielectrics , 1998 .

[30]  C. Navarro,et al.  Statistical analysis of the mechanical properties of composite materials , 2000 .