Entanglement dynamics of two-qubit pure state

We show that the entanglement dynamics for the pure state of a closed two-qubit system is part of a 10-dimensional complex linear differential equation defined on a supersphere, and the coefficients therein are completely determined by the system Hamiltonian. We apply the result to two physical examples of Josephson junction qubits and exchange Hamiltonians, deriving analytic solutions for the time evolution of entanglement. The Hamiltonian coefficients determine whether the entanglement is periodic. These results allow of investigating how to generate and manipulate entanglements efficiently, which are required by both quantum computation and quantum communication.

[1]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[2]  Yuriy Makhlin,et al.  Josephson-junction qubits with controlled couplings , 1999, Nature.

[3]  K. B. Whaley,et al.  Geometric theory of nonlocal two-qubit operations , 2002, quant-ph/0209120.

[4]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[5]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[6]  T. Yu,et al.  Sudden Death of Entanglement , 2009, Science.

[7]  A. Buchleitner,et al.  Optimal dynamical characterization of entanglement. , 2007, Physical review letters.

[8]  Jonathan J. Halliwell,et al.  Disentanglement and decoherence by open system dynamics , 2004 .

[9]  M. Kus,et al.  Measures and dynamics of entangled states , 2005, quant-ph/0505162.

[10]  Role of the Bell singlet state in the suppression of disentanglement , 2006, quant-ph/0607153.

[11]  J. Eberly,et al.  Quantum open system theory: bipartite aspects. , 2006, Physical review letters.

[12]  C. Roos Quantum mechanics: Dynamics of entanglement , 2008 .

[13]  M. Tiersch,et al.  Evolution equation for quantum entanglement , 2008 .

[14]  Complete disentanglement by partial pure dephasing , 2005, quant-ph/0507027.

[15]  Z. Ficek,et al.  Dark periods and revivals of entanglement in a two-qubit system , 2006 .

[16]  A study on the sudden death of entanglement , 2006, quant-ph/0612145.

[17]  L. Davidovich,et al.  Direct measurement of finite-time disentanglement induced by a reservoir , 2005, quant-ph/0509204.

[18]  W Dür,et al.  Stability of macroscopic entanglement under decoherence. , 2004, Physical review letters.

[19]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[20]  P. Horodecki,et al.  Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network , 2009, 0906.1305.

[21]  M. Horodecki,et al.  Dynamics of quantum entanglement , 2000, quant-ph/0008115.

[22]  Entanglement dynamics of qubits in a common environment , 2006, quant-ph/0604020.

[23]  Yuriy Makhlin Nonlocal Properties of Two-Qubit Gates and Mixed States, and the Optimization of Quantum Computations , 2002, Quantum Inf. Process..