Certain subclass of analytic functions based on $ q $-derivative operator associated with the generalized Pascal snail and its applications

By the principle of differential subordination and the $ q $-derivative operator, we introduce the $ q $-analog $ \mathcal{SP}^{q}_{snail}(\lambda; \alpha, \beta, \gamma) $ of certain class of analytic functions associated with the generalized Pascal snail. Firstly, we obtain the coefficient estimates and Fekete-Szegö functional inequalities for this class. Meanwhile, we also estimate the corresponding symmetric Toeplitz determinant. Secondly, for all the above results we provide the corresponding results for the reduced classes $ \mathcal{SP}^{q}_{snail}(\alpha, \beta, \gamma) $ and $ \mathcal{RP}^{q}_{snail}(\alpha, \beta, \gamma) $. Thirdly, we characterize the Bohr radius problems for the function class $ \mathcal{SP}^{q}_{snail}(\alpha, \beta, \gamma) $. Lastly, we establish certain results for some new subclasses of functions defined by the neutrosophic Poisson distribution series.

[1]  S. Kanas,et al.  On the behaviour of analytic representation of the generalized Pascal snail , 2021, Analysis and Mathematical Physics.

[2]  H. Halder,et al.  Bohr radius for certain classes of starlike and convex univalent functions , 2020, Journal of Mathematical Analysis and Applications.

[3]  H. Srivastava,et al.  Operators of Basic (or q-) Calculus and Fractional q-Calculus and Their Applications in Geometric Function Theory of Complex Analysis , 2020 .

[4]  H. Srivastava,et al.  A generalized conic domain and its applications to certain subclasses of analytic functions , 2019, Rocky Mountain Journal of Mathematics.

[5]  N. Jain,et al.  Bohr Radius for Classes of Analytic Functions , 2019, Results in Mathematics.

[6]  H. Srivastava,et al.  Properties of Spiral-Like Close-to-Convex Functions Associated with Conic Domains , 2019, Mathematics.

[7]  Eman S. A. Abujarad,et al.  Fekete-Szegö inequality for classes of (p, q)-Starlike and (p, q)-convex functions , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[8]  Khurshid Ahmad,et al.  Convolution properties for a family of analytic functions involvingq-analogue of Ruscheweyh differential operator , 2019, TURKISH JOURNAL OF MATHEMATICS.

[9]  Hari M. Srivastava,et al.  Coefficient inequalities for $q$-starlike functions associated with the Janowski functions , 2019, Hokkaido Mathematical Journal.

[10]  S. Ponnusamy,et al.  On the Bohr inequality with a fixed zero coefficient , 2019, Proceedings of the American Mathematical Society.

[11]  Hari M. Srivastava,et al.  Some General Classes of q-Starlike Functions Associated with the Janowski Functions , 2019, Symmetry.

[12]  Hari M. Srivastava,et al.  Hankel and Toeplitz Determinants for a Subclass of q-Starlike Functions Associated with a General Conic Domain , 2019, Mathematics.

[13]  S. Ponnusamy,et al.  On a powered Bohr inequality , 2018, Annales Academiae Scientiarum Fennicae Mathematica.

[14]  Nilanjan Das,et al.  Bohr phenomenon for subordinating families of certain univalent functions , 2018, Journal of Mathematical Analysis and Applications.

[15]  D. K. Thomas,et al.  TOEPLITZ DETERMINANTS WHOSE ELEMENTS ARE THE COEFFICIENTS OF ANALYTIC AND UNIVALENT FUNCTIONS , 2018, Bulletin of the Australian Mathematical Society.

[16]  Sarita Agrawal COEFFICIENT ESTIMATES FOR SOME CLASSES OF FUNCTIONS ASSOCIATED WITH $q$ -FUNCTION THEORY , 2017, Bulletin of the Australian Mathematical Society.

[17]  D. K. Thomas,et al.  RETRACTED ARTICLE: Toeplitz Matrices Whose Elements are the Coefficients of Starlike and Close-to-Convex Functions , 2016 .

[18]  S. Porwal An Application of a Poisson Distribution Series on Certain Analytic Functions , 2014 .

[19]  S. D. Purohit,et al.  Certain subclasses of analytic functions associated with fractional q-calculus operators , 2011 .

[20]  V. Yudin On Bohr’s inequality , 2011 .

[21]  L. Aĭzenberg Generalization of results about the Bohr radius for power series , 2006, math/0612769.

[22]  D. Khavinson,et al.  Remarks on the Bohr Phenomenon , 2004 .

[23]  M. Ismail,et al.  A generalization of starlike functions , 1990 .

[24]  F. H. Jackson q-Difference Equations , 1910 .

[25]  Huo Tang,et al.  Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator , 2021, AIMS Mathematics.

[26]  P. Banerji BOUNDS FOR POISSON AND NEUTROSOPHIC POISSON DISTRIBUTIONS ASSOCIATED WITH CHEBYSHEV POLYNOMIALS , 2020 .

[27]  H. Srivastava,et al.  Some general families of q-starlike functions associated with the Janowski functions , 2019, Filomat.

[28]  Sarita Agrawal,et al.  Bohr radius for certain classes of analytic functions , 2018 .

[29]  M. Darus,et al.  Coefficient estimates of classes of Q-starlike and Q-convex functions , 2016 .

[30]  S. Porwal,et al.  SOME SUFFICIENT CONDITIONS FOR POISSON DISTRIBUTION SERIES ASSOCIATED WITH CONIC REGIONS , 2015 .

[31]  H. Bohr,et al.  A Theorem Concerning Power Series , 1914 .