Conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) for the Subaru telescope

Recent developments in high-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exo-planets on the Subaru telescope. The IFS will provide spectral information for 140x140 spatial elements over a 1.75 arcsecs x 1.75 arcsecs field of view (FOV). CHARIS will operate in the near infrared (λ = 0.9-2.5μm) and provide a spectral resolution of R = 14, 33, and 65 in three separate observing modes. Taking advantage of the adaptive optics systems and advanced coronagraphs (AO188 and SCExAO) on the Subaru telescope, CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS is in the early design phases and is projected to have first light by the end of 2015. We report here on the current conceptual design of CHARIS and the design challenges.

[1]  T. Fusco,et al.  A probable giant planet imaged in the beta Pictoris disk. VLT/NaCo deep L'-band imaging , 2008, 0811.3583.

[2]  D. Fantinel,et al.  Optical design and test of the BIGRE-based IFS of SPHERE , 2011, Optical Systems Design.

[3]  Frantz Martinache,et al.  Scientific design of a high contrast integral field spectrograph for the Subaru Telescope , 2012, Other Conferences.

[4]  Frantz Martinache,et al.  Wavefront control with the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system , 2011, Optical Engineering + Applications.

[5]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[6]  Olivier Guyon,et al.  Performance of Subaru adaptive optics system AO188 , 2010, Astronomical Telescopes + Instrumentation.

[7]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[8]  Olivier Guyon,et al.  CAN GROUND-BASED TELESCOPES DETECT THE OXYGEN 1.27 μm ABSORPTION FEATURE AS A BIOMARKER IN EXOPLANETS? , 2012, 1206.0558.

[9]  James Lyke,et al.  OSIRIS: a diffraction limited integral field spectrograph for Keck , 2006, SPIE Astronomical Telescopes + Instrumentation.

[10]  Brian J. Bauman,et al.  The integral field spectrograph for the Gemini planet imager , 2014, Astronomical Telescopes and Instrumentation.

[11]  E. Pecontal,et al.  3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER. , 1995 .

[12]  Bruce A. Macintosh,et al.  The Gemini Planet Imager: from science to design to construction , 2008, Astronomical Telescopes + Instrumentation.

[13]  Shane Jacobson,et al.  HiCIAO: the Subaru Telescope's new high-contrast coronographic imager for adaptive optics , 2008, Astronomical Telescopes + Instrumentation.

[14]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[15]  W. Marsden I and J , 2012 .

[16]  Subaru Telescope,et al.  DISCOVERY OF THE COLDEST IMAGED COMPANION OF A SUN-LIKE STAR , 2009, 0911.1127.

[17]  R. Vanderbei,et al.  Extrasolar Planet Finding via Optimal Apodized-Pupil and Shaped-Pupil Coronagraphs , 2003 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  E. Kokubo,et al.  DIRECT IMAGING OF FINE STRUCTURES IN GIANT PLANET-FORMING REGIONS OF THE PROTOPLANETARY DISK AROUND AB AURIGAE , 2011, 1102.4408.

[20]  C. A. Grady,et al.  DISCOVERY OF SMALL-SCALE SPIRAL STRUCTURES IN THE DISK OF SAO 206462 (HD 135344B): IMPLICATIONS FOR THE PHYSICAL STATE OF THE DISK FROM SPIRAL DENSITY WAVE THEORY , 2012, 1202.6139.

[21]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. I. Principle , 2004, astro-ph/0412179.

[22]  Olivier Guyon,et al.  Commissioning status of Subaru laser guide star adaptive optics system , 2010, Astronomical Telescopes + Instrumentation.

[23]  Olivier Guyon,et al.  Current status of the laser guide star adaptive optics system for Subaru Telescope , 2008, Astronomical Telescopes + Instrumentation.

[24]  Jr.,et al.  A New High Contrast Imaging Program at Palomar Observatory , 2010, 1012.0008.

[25]  David G. Bonfield,et al.  GFP-IFS: a coronagraphic integral field spectrograph for the APO 3.5-meter telescope , 2008, Astronomical Telescopes + Instrumentation.

[26]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[27]  Frantz Martinache,et al.  The Subaru coronagraphic extreme AO project: progress report , 2011, Optical Engineering + Applications.

[28]  M. Ireland,et al.  LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION? , 2011, 1110.3808.

[29]  M. Ireland,et al.  A Young Exoplanet Caught at Formation , 2011 .

[30]  O. Guyon,et al.  THE MISSING CAVITIES IN THE SEEDS POLARIZED SCATTERED LIGHT IMAGES OF TRANSITIONAL PROTOPLANETARY DISKS: A GENERIC DISK MODEL , 2012, 1203.1612.

[31]  Andreas Quirrenbach,et al.  OSIRIS: A diffraction limited integral field spectrograph for Keck , 2006 .