Application of methods based on higher-order statistics for chaotic time series analysis

Abstract The aim of this paper is to illustrate some applications of HOS within the context of chaotic time series analysis. After reviewing briefly some of the most popular methods and approaches used in chaotic signal analysis, we show how HOS may lead to some significant improvement. First, an HOS expansion of the mutual information is shown to provide an easy way to estimate the reconstruction delay that must be used in the embedding reconstruction method. Then, a fourth-order extension of the local intrinsic dimension analysis (LID) is proposed. The ability of this HOS extension to separate between chaotic and stochastic behaviour is illustrated by examples on simulated data and experimental time series.

[1]  Patrick Flandrin,et al.  Higher Order Statistics for Chaotic Signal Analysis , 1996 .

[2]  H. Schuster,et al.  Proper choice of the time delay for the analysis of chaotic time series , 1989 .

[3]  F. Takens Detecting strange attractors in turbulence , 1981 .

[4]  H. Herzel Chaotic Evolution and Strange Attractors , 1991 .

[5]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[6]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[7]  Gregory W. Wornell,et al.  Signal processing in the context of chaotic signals , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[8]  Henry D. I. Abarbanel,et al.  Chaotic signals and physical systems , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  Y. Pomeau,et al.  Order within chaos , 1986 .

[10]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[11]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[12]  John S. Nicolis Chaos and information processing - a heuristic outline , 1991 .

[13]  David Ruelle,et al.  Deterministic chaos: the science and the fiction , 1995 .

[14]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[15]  Schwartz,et al.  Singular-value decomposition and the Grassberger-Procaccia algorithm. , 1988, Physical review. A, General physics.

[16]  A. Provenzale,et al.  Finite correlation dimension for stochastic systems with power-law spectra , 1989 .

[17]  J. D. Farmer,et al.  Order within chaos , 1984 .

[18]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[19]  Andrew M. Fraser,et al.  Information and entropy in strange attractors , 1989, IEEE Trans. Inf. Theory.

[20]  E. Bacry,et al.  Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[22]  M.R. Raghuveer,et al.  Bispectrum estimation: A digital signal processing framework , 1987, Proceedings of the IEEE.

[23]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[24]  Comon 5 - Analyse en composantes indépendantes et identification aveugle , 1990 .

[25]  Patrick Flandrin,et al.  An investigation of chaos-oriented dimensionality algorithms applied to AR(1) processes , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[26]  Rodney C. L. Wolff A note on the behaviour of the correlation integral in the presence of a time series , 1990 .

[27]  A. Passamante,et al.  Using higher-order correlations to define an embedding window , 1991 .

[28]  Vinod Chandran,et al.  HIGHER-ORDER SPECTRAL ANALYSIS TO DETECT NONLINEAR INTERACTIONS IN MEASURED TIME SERIES AND AN APPLICATION TO CHUA’S CIRCUIT , 1993 .

[29]  J. Theiler Some Comments on the Correlation Dimension of 1/fαNoise , 1991 .

[30]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[31]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[32]  Ali Bulent Cambel,et al.  Applied Chaos Theory: A Paradigm for Complexity , 1992 .

[33]  Hediger,et al.  Fractal dimension and local intrinsic dimension. , 1989, Physical review. A, General physics.

[34]  Keinosuke Fukunaga,et al.  An Algorithm for Finding Intrinsic Dimensionality of Data , 1971, IEEE Transactions on Computers.

[35]  Y. Wong,et al.  Differentiable Manifolds , 2009 .

[36]  Farrell,et al.  Characterizing attractors using local intrinsic dimension via higher-order statistics. , 1991, Physical review. A, Atomic, molecular, and optical physics.