Supervised super-vector encoding for facial expression recognition

Expression recognition from faces with varying pose and illumination conditions is a challenging research area with growing interest. In this paper, we develop a novel supervised super-vector encoding framework to learn discriminative image feature representations. The framework is then validated on the Multi-PIE and BU3D-FE databases for multi-view facial expression recognition. Extensive experiments show that our supervised framework gives significant improvement over the unsupervised counterpart and outperforms the state-of-the-arts.

[1]  Zhen Li,et al.  Hierarchical Gaussianization for image classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[2]  Thomas S. Huang,et al.  A novel approach to expression recognition from non-frontal face images , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[3]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[4]  Antonio Criminisi,et al.  Object categorization by learned universal visual dictionary , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[5]  Thomas G. Dietterich,et al.  Learning non-redundant codebooks for classifying complex objects , 2009, ICML '09.

[6]  Thomas S. Huang,et al.  Non-frontal view facial expression recognition based on ergodic hidden Markov model supervectors , 2010, 2010 IEEE International Conference on Multimedia and Expo.

[7]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[8]  Thomas S. Huang,et al.  Emotion Recognition from Non-Frontal Facial Images , 2015 .

[9]  Rogério Schmidt Feris,et al.  Manifold Based Analysis of Facial Expression , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[10]  Svetlana Lazebnik,et al.  Supervised Learning of Quantizer Codebooks by Information Loss Minimization , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Roberto Cipolla,et al.  Semantic texton forests for image categorization and segmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Shuicheng Yan,et al.  SIFT-Bag kernel for video event analysis , 2008, ACM Multimedia.

[13]  Peter W. McOwan,et al.  A real-time automated system for the recognition of human facial expressions , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  Richard Bowden,et al.  The Effect of Pose on Facial Expression Recognition , 2009, BMVC.

[15]  Maja Pantic,et al.  Coupled Gaussian Process Regression for Pose-Invariant Facial Expression Recognition , 2010, ECCV.

[16]  Thomas S. Huang,et al.  Emotion Recognition from Arbitrary View Facial Images , 2010, ECCV.

[17]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[18]  Jean Ponce,et al.  Learning mid-level features for recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Thomas S. Huang,et al.  Multi-view Facial Expression Recognition Analysis with Generic Sparse Coding Feature , 2012, ECCV Workshops.

[20]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[21]  Thomas S. Huang,et al.  Supervised translation-invariant sparse coding , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Thomas S. Huang,et al.  Maximum margin GMM learning for facial expression recognition , 2013, 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[23]  Zhiwei Li,et al.  Max-Margin Dictionary Learning for Multiclass Image Categorization , 2010, ECCV.

[24]  Zhihong Zeng,et al.  Audio–Visual Affective Expression Recognition Through Multistream Fused HMM , 2008, IEEE Transactions on Multimedia.

[25]  Richard Bowden,et al.  Local binary patterns for multi-view facial expression recognition , 2011 .

[26]  Kjell Elenius,et al.  Emotion Recognition , 2009, Computers in the Human Interaction Loop.

[27]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[28]  Hatice Gunes,et al.  How to distinguish posed from spontaneous smiles using geometric features , 2007, ICMI '07.

[29]  Lijun Yin,et al.  A study of non-frontal-view facial expressions recognition , 2008, 2008 19th International Conference on Pattern Recognition.

[30]  Stefano Soatto,et al.  Localizing Objects with Smart Dictionaries , 2008, ECCV.

[31]  Maja Pantic,et al.  Motion history for facial action detection in video , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[32]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[33]  Maja Pantic,et al.  Regression-Based Multi-view Facial Expression Recognition , 2010, 2010 20th International Conference on Pattern Recognition.

[34]  Beat Fasel,et al.  Automati Fa ial Expression Analysis: A Survey , 1999 .

[35]  Guillermo Sapiro,et al.  Supervised Dictionary Learning , 2008, NIPS.

[36]  M. Bartlett,et al.  Machine Analysis of Facial Expressions , 2007 .

[37]  Witold Pedrycz,et al.  Face recognition: A study in information fusion using fuzzy integral , 2005, Pattern Recognit. Lett..

[38]  Jun Wang,et al.  A 3D facial expression database for facial behavior research , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[39]  Zhihong Zeng,et al.  A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions , 2009, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Simon Lucey,et al.  Investigating Spontaneous Facial Action Recognition through AAM Representations of the Face , 2007 .

[41]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints Abstract by Matthijs Dorst Based on the paper by , 2011 .

[42]  Florent Perronnin,et al.  Universal and Adapted Vocabularies for Generic Visual Categorization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Takeo Kanade,et al.  Multi-PIE , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.