Fault diagnostics of an electrical machine with multiple support vector classifiers
暂无分享,去创建一个
S. Poyhonen | H. Hyotyniemi | H. Koivo | M. Negrea | A. Arkkio | H. Hyotyniemi | A. Arkkio | M. Negrea | Sanna Pöyhönen | Heikki Koivo
[1] Mo-Yuen Chow,et al. Neural-network-based motor rolling bearing fault diagnosis , 2000, IEEE Trans. Ind. Electron..
[2] Seppo J. Ovaska,et al. Polynomial predictive filtering in control instrumentation: a review , 1999, IEEE Trans. Ind. Electron..
[3] Mohamed Benbouzid,et al. A review of induction motors signature analysis as a medium for faults detection , 1998, IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200).
[4] S. Poyhonen,et al. Support vector classification for fault diagnostics of an electrical machine , 2002, 6th International Conference on Signal Processing, 2002..
[5] Robert E. Uhrig,et al. Monitoring and diagnosis of rolling element bearings using artificial neural networks , 1993, IEEE Trans. Ind. Electron..
[6] Mohamed El Hachemi Benbouzid. A review of induction motors signature analysis as a medium for faults detection , 2000, IEEE Trans. Ind. Electron..
[7] Nello Cristianini,et al. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .
[8] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[9] A. Arkkio. Finite element analysis of cage induction motors fed by static frequency converters , 1990 .