Radiation induced grain boundary segregation in ferritic/martensitic steels

[1]  M. Nastar,et al.  Radiation-Induced Segregation , 2020, Comprehensive Nuclear Materials.

[2]  Jing Zhang,et al.  Radiation damage in helium ion–irradiated reduced activation ferritic/martensitic steel , 2017 .

[3]  Ying Yang,et al.  Roles of vacancy/interstitial diffusion and segregation in the microchemistry at grain boundaries of irradiated Fe–Cr–Ni alloys , 2016 .

[4]  Pascal Yvon,et al.  Structural materials for next generation nuclear systems: Challenges and the path forward , 2015 .

[5]  Ying Yang,et al.  Defect Sink Characteristics of Specific Grain Boundary Types in 304 Stainless Steels Under High Dose Neutron Environments , 2015 .

[6]  G. Was,et al.  The mechanism of radiation-induced segregation in ferritic–martensitic alloys , 2014 .

[7]  K. Sridharan,et al.  Relationship between lath boundary structure and radiation induced segregation in a neutron irradiated 9 wt.% Cr model ferritic/martensitic steel , 2014 .

[8]  G. Was,et al.  A systematic study of radiation-induced segregation in ferritic-martensitic alloys , 2013 .

[9]  G. Smith,et al.  Effect of grain boundary orientation on radiation-induced segregation in a Fe–15.2 at.% Cr alloy , 2013 .

[10]  D. Morgan,et al.  Dependence on grain boundary structure of radiation induced segregation in a 9 wt.% Cr model ferritic/martensitic steel , 2013 .

[11]  Z. Jiao,et al.  Application of the inverse Kirkendall model of radiation-induced segregation to ferritic–martensitic alloys , 2012 .

[12]  D. Morgan,et al.  Assessment of radiation-induced segregation mechanisms in austenitic and ferritic–martensitic alloys , 2011 .

[13]  Pavel Lejček,et al.  Grain boundary segregation in metals , 2010 .

[14]  S. Zinkle,et al.  Structural materials for fission & fusion energy , 2009 .

[15]  F. Carré,et al.  Structural materials challenges for advanced reactor systems , 2009 .

[16]  B. Wirth,et al.  Irradiation-induced grain boundary chromium microchemistry in high alloy ferritic steels , 2008 .

[17]  Gary S. Was,et al.  Fundamentals of Radiation Materials Science: Metals and Alloys , 2007 .

[18]  Gunther Eggeler,et al.  On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels , 2007 .

[19]  Fu-Rong Chen,et al.  Numerical simulation modeling on the effects of grain boundary misorientation on radiation-induced solute segregation in 304 austenitic stainless steels , 2001 .

[20]  Heishichiro Takahashi,et al.  Sink effect of grain boundary on radiation-induced segregation in austenitic stainless steel , 2000 .

[21]  T. Allen,et al.  Modeling radiation-induced segregation in austenitic Fe-Cr-Ni alloys , 1998 .

[22]  E. Kenik,et al.  On the mechanism of radiation-induced segregation in austenitic Fe–Cr–Ni alloys , 1998 .

[23]  E. Kenik,et al.  The effect of alloy composition on radiation-induced segregation in FeCrNi alloys , 1997 .

[24]  Y. Osetsky,et al.  Vacancy and Interstitial Diffusion in bcc-Fe , 1997 .

[25]  S. M. Murphy Contribution of interstitial migration to segregation in concentrated alloys , 1991 .

[26]  S. M. Murphy,et al.  Analysis of phosphorus segregation in ion-irradiated nickel , 1990 .

[27]  S. M. Murphy A model for segregation in dilute alloys during irradiation , 1989 .

[28]  A. Marwick Calculation of bias due to solute redistribution in an irradiated binary alloy: Surfaces of a thin foil , 1985 .

[29]  S. J. Rothman,et al.  Self-diffusion in austenitic Fe-Cr-Ni alloys , 1980 .

[30]  L. Rehn,et al.  Radiation-induced segregation in binary and ternary alloys , 1979 .

[31]  H. Wiedersich,et al.  A theory of radiation-induced segregation in concentrated alloys☆ , 1979 .

[32]  A. Marwick Segregation in irradiated alloys: The inverse Kirkendall effect and the effect of constitution on void swelling , 1978 .

[33]  R. Johnson,et al.  Solute segregation in metals under irradiation , 1976 .

[34]  D. Brandon,et al.  The structure of high-angle grain boundaries , 1966 .