Hyperspectral Image Compression Using Hybrid Transform With Embedded Zero-Tree Wavelet And Set Partitioning In Hierarchical Tree

Hyperspectral images are three-dimensional representations comprising spatial and spectral dimensions. Hence, these images contain a huge volume of data, and compression is required for their efficient transmission, storage, and processing. We propose a hyperspectral image compression technique using a hybrid transform. Specifically, the integer Karhunen–Loève transform with clustering and tiling is applied to the spectral dimension to decorrelate the corresponding data. Then, the 2D integer discrete wavelet transform is applied over the spatial dimension to decorrelate the spatial data. In addition, the decorrelated wavelet coefficients are applied in the embedded zero-tree wavelet transform. Alternatively, the data are processed by an algorithm containing set partitioning in hierarchical tree. The wavelet transform and partitioning on the hybrid transform over hyperspectral images retrieve high peak signal-to-noise ratio, low number of bits per pixel per band, and fast computation time compared to similar approaches, with the partitioning showing the best results. Index Terms : Hyperspectral image; embedded zero-tree wavelet (EZW); set partitioning in hierarchical tree (SPIHT); integer Karhunen–Loève transform; integer discrete wavelet transform. ————————————————————

[1]  John F. Arnold,et al.  The lossless compression of AVIRIS images by vector quantization , 1997, IEEE Trans. Geosci. Remote. Sens..

[2]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[3]  Lei Zhang,et al.  Band-Subset-Based Clustering and Fusion for Hyperspectral Imagery Classification , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Junwei Han,et al.  Novel Folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing , 2014 .

[5]  Qian Du,et al.  Hyperspectral Image Compression Using JPEG2000 and Principal Component Analysis , 2007, IEEE Geoscience and Remote Sensing Letters.

[6]  Nasir D. Memon,et al.  Context-based, adaptive, lossless image coding , 1997, IEEE Trans. Commun..

[7]  A. Jensen,et al.  Ripples in Mathematics - The Discrete Wavelet Transform , 2001 .

[8]  Xiaobo Li,et al.  An improved lattice vector quantization scheme for wavelet compression , 1998, IEEE Trans. Signal Process..

[9]  Pengwei Hao,et al.  Matrix factorizations for reversible integer mapping , 2001, IEEE Trans. Signal Process..

[10]  Nasir D. Memon,et al.  Context-based lossless interband compression-extending CALIC , 2000, IEEE Trans. Image Process..

[11]  R. E. Roger,et al.  Lossless compression of AVIRIS images , 1996, IEEE Trans. Image Process..

[12]  Luciano Alparone,et al.  Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction , 1999, IEEE Trans. Geosci. Remote. Sens..

[13]  Mohammed Ghanbari,et al.  A successive approximation vector quantizer for wavelet transform image coding , 1996, IEEE Trans. Image Process..

[14]  A. Turing ROUNDING-OFF ERRORS IN MATRIX PROCESSES , 1948 .

[15]  Jan J. Gerbrands,et al.  On the relationships between SVD, KLT and PCA , 1981, Pattern Recognit..

[16]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[17]  Zixiang Xiong,et al.  Low bit-rate scalable video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT) , 2000, IEEE Trans. Circuits Syst. Video Technol..

[18]  Chein-I Chang,et al.  Variable-Number Variable-Band Selection for Feature Characterization in Hyperspectral Signatures , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Enrico Magli,et al.  Embedded lossy to lossless compression of hyperspectral images using JPEG 2000 , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[20]  Jeffrey C. Dill,et al.  An Improved EZW Hyperspectral Image Compression , 2014 .

[21]  Pengwei Hao,et al.  Reversible integer KLT for progressive-to-lossless compression of multiple component images , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[22]  Saverio Salzo,et al.  Lossless hyperspectral compression using KLT , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[23]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[24]  G. Blelloch Introduction to Data Compression * , 2022 .

[25]  Enrico Magli,et al.  Transform Coding Techniques for Lossy Hyperspectral Data Compression , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Ian Blanes,et al.  Cost and Scalability Improvements to the Karhunen–Loêve Transform for Remote-Sensing Image Coding , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Jieping Ye,et al.  Probabilistic Interpretations and Extensions for a Family of 2D PCA-style Algorithms , 2008 .

[28]  Robert M. Gray,et al.  Image Compression with a Vector Speck Algorithm , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.