Combinatorial Investigations of Si-M ( M = Cr + Ni , Fe , Mn ) Thin Film Negative Electrode Materials

Thin film libraries of sputtered Si x M 1 - x (M = Cr + Ni, Fe, Mn) have been investigated for use as negative electrode materials in Li-ion rechargeable batteries. Results from over 200 compositions are reported here. Theobserved capacity decreases as transition metal content increases, approaching zero around 50 atom % Si, and can be approximated assuming active Si in an inactive SiM (M = Cr, Fe, Mn or Ni) matrix. Plots of differential capacity vs. potential are characteristic of a-Si in an inert matrix, in agreement with X-ray diffraction results. The behavior of Si-Mn thin film libraries differs from that of Si-Fe and Si-Cr-Ni libraries for the range of 50 to 70 atom % Si.

[1]  Margret Wohlfahrt-Mehrens,et al.  A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries , 1999 .

[2]  R. Huggins,et al.  The formation and properties of amorphous silicon as negative electrode reactant in lithium systems , 2003 .

[3]  Martin Winter,et al.  Small particle size multiphase Li-alloy anodes for lithium-ionbatteries , 1996 .

[4]  D. H. Bradhurst,et al.  Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries , 2000 .

[5]  Y. Yoon,et al.  Electrochemical characteristics of Co–Si alloy and multilayer films as anodes for lithium ion microbatteries , 2003 .

[6]  J. Wolfenstine CaSi2 as an anode for lithium-ion batteries , 2003 .

[7]  T. D. Hatchard,et al.  Design and Testing of a Low-Cost Multichannel Pseudopotentiostat for Quantitative Combinatorial Electrochemical Measurements on Large Electrode Arrays , 2003 .

[8]  J. Dahn,et al.  Economical sputtering system to produce large-size composition-spread libraries having linear and orthogonal stoichiometry variations , 2002 .

[9]  H. Lee,et al.  Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries , 2002 .

[10]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[11]  R. Huggins,et al.  Multinary alloy electrodes for solid state batteries II. A new LiSiMg alloy negative electrode material for use in high energy density rechargeable lithium cells , 1992 .

[12]  J. Dahn,et al.  The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys , 2003 .

[13]  R. Huggins Alternative materials for negative electrodes in lithium systems , 2002 .

[14]  H. X. Yang,et al.  Carbon/Ba–Fe–Si alloy composite as high capacity anode materials for Li-ion batteries , 2003 .

[15]  Sung-Man Lee,et al.  An all-solid-state thin film battery using LISIPON electrolyte and Si–V negative electrode films , 2003 .

[16]  T. D. Hatchard,et al.  Design and Testing of a 64-Channel Combinatorial Electrochemical Cell , 2003 .

[17]  H. Lee,et al.  Si–Zr alloy thin-film anodes for microbatteries , 2003 .

[18]  J. Dahn,et al.  Combinatorial Investigations of the Si-Al-Mn System for Li-Ion Battery Applications , 2004 .

[19]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[20]  D. H. Bradhurst,et al.  Innovative nanosize lithium storage alloys with silica as active centre , 2000 .

[21]  H. Lee,et al.  Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries , 2003 .

[22]  J. Dahn,et al.  Combinatorial investigations of advanced Li-ion rechargeable battery electrode materials , 2004 .