Synthesis, Analysis, and Electrical Property Measurements of Compound Nanotubes in the B-C-N Ceramic System

Nanotubular structures in the B-C-N ceramic system represent an intriguing alternative to conventional carbon nanotubes. Because of the ability to widely vary the chemical composition of nanotubes within the B-C-N ternary phase diagram and to change the stacking of C-rich or BN-rich tubular shells in multiwalled structures, a wide horizon opens up for tuning nanostructure electrical properties. Pure carbon nanotubes are metals or narrow-bandgap semiconductors, depending on the helicity and diameter, whereas those of BN are insulators with a ~5.0 eV gap independent of these parameters. Thus, the relative B/C/N ratios and/or BN-rich and C-rich domain spatial arrangements, rather than tube helicity and diameter, are assumed to primarily determine the B-C-N nanotube electrical response. This characteristic is highly valuable for nanotechnology: while tube diameter and helicity are currently difficult to control, continuous doping of C with BN, or vice versa, proceeds relatively easily due to the isostructural nature of layered C and BN materials. In this article, recent progress in the synthesis, microscopic analysis, and electrical property measurements of a variety of compound nanotubes in the ceramic B-C-N system is documented and discussed.

[1]  A. Zettl,et al.  Packing C60 in Boron Nitride Nanotubes , 2003, Science.

[2]  M. Terrones,et al.  Structure, transport and field-emission properties of compound nanotubes: CNx vs. BNCx (x<0.1) , 2003 .

[3]  M. Terrones,et al.  Cables of BN-insulated B–C–N nanotubes , 2003 .

[4]  A. Zettl,et al.  GaN nanorods coated with pure BN , 2002 .

[5]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[6]  M. Terrones,et al.  Synthetic routes to nanoscale BxCyNz architectures , 2002 .

[7]  Y. Bando,et al.  Field emission from individual B–C–N nanotube rope , 2002 .

[8]  Y. Bando,et al.  Semiconducting B-C-N nanotubes with few layers , 2002 .

[9]  Y. Bando,et al.  Insulating `nanocables': Invar Fe–Ni alloy nanorods inside BN nanotubes , 2001 .

[10]  M. L. D. L. Chapelle,et al.  Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration , 2001 .

[11]  Takayuki Watanabe,et al.  BCN nanotubes prepared by a plasma evaporation method , 2001 .

[12]  Thomas Stöckli,et al.  Field emission from carbon nanotubes: the first five years , 2001 .

[13]  Y. Bando,et al.  Synthesis and characterization of ropes made of BN multiwalled nanotubes , 2001 .

[14]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[15]  L. Marks,et al.  Single-walled BN nanostructures. , 2001, Physical review letters.

[16]  Y. Bando,et al.  Nanotubes of boron nitride filled with molybdenum clusters. , 2001, Journal of nanoscience and nanotechnology.

[17]  Rusli,et al.  Semiconducting boron carbonitride nanostructures: Nanotubes and nanofibers , 2000 .

[18]  Dmitri Golberg,et al.  Insights into the structure of BN nanotubes , 2000 .

[19]  Philip G. Collins,et al.  Materials: Peeling and sharpening multiwall nanotubes , 2000, Nature.

[20]  R. Ruoff,et al.  CVD Growth of Boron Nitride Nanotubes , 2000 .

[21]  A. Zettl,et al.  Mass-production of boron nitride double-wall nanotubes and nanococoons , 2000 .

[22]  Bingqing Wei,et al.  ELECTRICAL TRANSPORT IN PURE AND BORON-DOPED CARBON NANOTUBES , 1999 .

[23]  John D. Fitz Gerald,et al.  A solid-state process for formation of boron nitride nanotubes , 1999 .

[24]  Y. Saito,et al.  Structures of Boron Nitride Nanotubes with Single-Layer and Multilayers Produced by Arc Discharge , 1999 .

[25]  Y. Bando,et al.  Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction , 1998 .

[26]  P. Ajayan,et al.  Effects of nanodomain formation on the electronic structure of doped carbon nanotubes , 1998 .

[27]  Iijima,et al.  Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon , 1998, Science.

[28]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[29]  P. Ajayan,et al.  BCN nanotubes and boron doping of carbon nanotubes , 1996 .

[30]  M. Kawaguchi B/C/N Materials Based on the Graphite Network , 1997 .

[31]  Steven G. Louie,et al.  Boron Nitride Nanotubes , 1995, Science.

[32]  P. Ajayan,et al.  Doping Graphitic and Carbon Nanotube Structures with Boron and Nitrogen , 1994, Science.

[33]  S. Louie,et al.  Stability and Band Gap Constancy of Boron Nitride Nanotubes , 1994 .

[34]  Miyamoto,et al.  Chiral tubules of hexagonal BC2N. , 1994, Physical review. B, Condensed matter.

[35]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[36]  R. Gomer,et al.  Field Emission and Field Ionization , 1961 .

[37]  Y. Bando,et al.  Synthesis, HRTEM and electron diffraction studies of B/N-doped C and BN nanotubes , 2001 .

[38]  L. Bourgeois,et al.  Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles , 2000 .

[39]  R. Car,et al.  Structural and electronic properties of composite BxCyNz nanotubes and heterojunctions , 1999 .