Generalized Pseudolikelihood Methods for Inverse Covariance Estimation
暂无分享,去创建一个
Kshitij Khare | Sang-Yun Oh | Bala Rajaratnam | Alnur Ali | K. Khare | B. Rajaratnam | Alnur Ali | Sang-Yun Oh
[1] Mark W. Schmidt,et al. Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization , 2011, NIPS.
[2] R. Tibshirani. The Lasso Problem and Uniqueness , 2012, 1206.0313.
[3] Seung-Jean Kim,et al. Condition‐number‐regularized covariance estimation , 2013, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[4] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[5] Adam J. Rothman,et al. Sparse permutation invariant covariance estimation , 2008, 0801.4837.
[6] P. Zhao,et al. A path following algorithm for Sparse Pseudo-Likelihood Inverse Covariance Estimation (SPLICE) , 2008, 0807.3734.
[7] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[8] Alexandre d'Aspremont,et al. Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .
[9] Pierre Pinson,et al. Global Energy Forecasting Competition 2012 , 2014 .
[10] M. Rudelson,et al. Hanson-Wright inequality and sub-gaussian concentration , 2013 .
[11] Trevor Hastie,et al. Applications of the lasso and grouped lasso to the estimation of sparse graphical models , 2010 .
[12] J. Zico Kolter,et al. The Multiple Quantile Graphical Model , 2016, NIPS.
[13] Pei Wang,et al. Partial Correlation Estimation by Joint Sparse Regression Models , 2008, Journal of the American Statistical Association.
[14] R. Tibshirani,et al. Strong rules for discarding predictors in lasso‐type problems , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[15] Kshitij Khare,et al. Optimization Methods for Sparse Pseudo-Likelihood Graphical Model Selection , 2014, NIPS.
[16] J. Zico Kolter,et al. Sparse Gaussian Conditional Random Fields: Algorithms, Theory, and Application to Energy Forecasting , 2013, ICML.
[17] Michael I. Jordan. Graphical Models , 1998 .
[18] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[19] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[20] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[21] K. Khare,et al. A convex pseudolikelihood framework for high dimensional partial correlation estimation with convergence guarantees , 2013, 1307.5381.
[22] Ji Zhu,et al. Boosting as a Regularized Path to a Maximum Margin Classifier , 2004, J. Mach. Learn. Res..
[23] Trevor J. Hastie,et al. Exact Covariance Thresholding into Connected Components for Large-Scale Graphical Lasso , 2011, J. Mach. Learn. Res..
[24] Olivier Ledoit,et al. Honey, I Shrunk the Sample Covariance Matrix , 2003 .
[25] Stephen P. Boyd,et al. Proximal Algorithms , 2013, Found. Trends Optim..