Induced Ramsey-type theorems

Abstract We present a unified approach to proving Ramsey-type theorems for graphs with a forbidden induced subgraph which can be used to extend and improve the earlier results of Rodl, Łuczak-Rodl, Promel-Rodl, Erdős-Hajnal, and Nikiforov. The proofs are based on a simple lemma (generalizing one by Graham, Rodl, and Rucinski) that can be used as a replacement for Szemeredi's regularity lemma, thereby giving much better bounds. The same approach can be also used to show that pseudo-random graphs have strong induced Ramsey properties. This leads to explicit constructions for upper bounds on various induced Ramsey numbers.

[1]  Walter Deuber A generalization of Ramsey's theorem for regular trees , 1975 .

[2]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[3]  Vojtech Rödl,et al.  On Induced Ramsey Numbers for Graphs with Bounded Maximum Degree , 1996, J. Comb. Theory, Ser. B.

[4]  Vojtech Rödl,et al.  On graphs with linear Ramsey numbers , 2000, J. Graph Theory.

[5]  Maria Chudnovsky,et al.  The Erdös-Hajnal conjecture for bull-free graphs , 2008, J. Comb. Theory, Ser. B.

[6]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[7]  József Beck,et al.  On size Ramsey number of paths, trees, and circuits. I , 1983, J. Graph Theory.

[8]  Noga Alon,et al.  Ramsey-type Theorems with Forbidden Subgraphs , 2001, Comb..

[9]  Benny Sudakov,et al.  Density theorems for bipartite graphs and related Ramsey-type results , 2007, Comb..

[10]  Paul Erdös,et al.  Cutting a graph into two dissimilar halves , 1988, J. Graph Theory.

[11]  Noga Alon,et al.  Crossing patterns of semi-algebraic sets , 2005, J. Comb. Theory, Ser. A.

[12]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[13]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[14]  Paul Erdös ON SOME PROBLEMS IN GRAPH THEORY , COMBINATORIAL ANALYSIS AND COMBINATORIAL NUMBER THEORY , 2004 .

[15]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[16]  Paul Erdös,et al.  Some problems in graph theory , 1974 .

[17]  Marcus Schaefer,et al.  Induced Graph Ramsey Theory , 2003, Ars Comb..

[18]  Benny Sudakov,et al.  Induced subgraphs of Ramsey graphs with many distinct degrees , 2007, J. Comb. Theory, Ser. B.

[19]  Paul Erdös,et al.  Ramsey-type theorems , 1989, Discret. Appl. Math..

[20]  S. Burr ON THE MAGNITUDE OF GENERALIZED RAMSEY NUMBERS FOR GRAPHS , 1973 .

[21]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[22]  Tomasz Luczak,et al.  On induced Ramsey numbers , 2002, Discret. Math..

[23]  D. Conlon A new upper bound for diagonal Ramsey numbers , 2006, math/0607788.

[24]  P. Erdos,et al.  On a Ramsey type theorem , 1972 .

[25]  X. Ren,et al.  Mathematics , 1935, Nature.

[26]  J. Bourgain,et al.  MORE ON THE SUM-PRODUCT PHENOMENON IN PRIME FIELDS AND ITS APPLICATIONS , 2005 .

[27]  Saharon Shelah,et al.  Erdos and Rényi Conjecture , 1998, J. Comb. Theory, Ser. A.

[28]  Vojtech Rödl On universality of graphs with uniformly distributed edges , 1986, Discret. Math..

[29]  Noga Alon,et al.  The Shannon Capacity of a Union , 1998, Comb..

[30]  P. Erdös Problems and Results on Finite and Infinite Graphs , 1975 .

[31]  Vladimir Nikiforov Edge Distribution of Graphs with Few Copies of a Given Graph , 2006, Comb. Probab. Comput..

[32]  Guy Kindler,et al.  Simulating independence: new constructions of condensers, ramsey graphs, dispersers, and extractors , 2005, STOC '05.

[33]  János Pach,et al.  A Ramsey-type result for convex sets , 1994 .

[34]  Nancy Eaton Ramsey numbers for sparse graphs , 1998, Discret. Math..

[35]  Paul Erdös,et al.  A Ramsey-type theorem for bipartite graphs , 2000 .

[36]  P. ERDŐS-A. HAJNAL-L. PÓSA STRONG EMBEDDINGS OF GRAPHS INTO COLORED GRAPHS , 2004 .

[37]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[38]  Vojtech Rödl,et al.  Non-Ramsey Graphs Are c log n-Universal , 1999, J. Comb. Theory, Ser. A.

[39]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[40]  Noga Alon,et al.  Induced subgraphs of prescribed size , 2003 .

[41]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[42]  R. Graham,et al.  A Tribute to Paul Erdős: On graphs not containing prescribed induced subgraphs , 1990 .

[43]  P. Erdös Some remarks on the theory of graphs , 1947 .

[44]  Yoshiharu Kohayakawa,et al.  The Induced Size-Ramsey Number of Cycles , 1995, Combinatorics, Probability and Computing.

[45]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[46]  Avi Wigderson,et al.  2-source dispersers for sub-polynomial entropy and Ramsey graphs beating the Frankl-Wilson construction , 2006, STOC '06.