On the strength of dislocation interactions and their effect on latent hardening in pure Magnesium

Abstract This study is dedicated to the quantification of latent hardening and its effect on the plasticity of pure hexagonal magnesium. To this end, discrete dislocation dynamics simulations are used to (1) extract latent hardening parameters coupling different slip systems, and to (2) assess the validity of two existing constitutive models linking slip system strength to dislocation densities on all slip systems. As hexagonal materials deform via activation of different slip modes, each with different mobilities and lattice friction stress, the effects of the latter on latent hardening evolution are also investigated. It is found that the multi-slip formulation proposed by Franciosi and Zaoui gives accurate predictions when multiple interactions are involved while the formulation suggested by Lavrentev and Pokhil systematically overestimates the flow stress. Similar to FCC materials, it is also found that collinear interactions potentially contribute the most to latent hardening. Basal/pyramidal 〈c + a〉 interactions are found to be very strong, while interactions involving second-order pyramidal 〈c + a〉 primary dislocations appear to be the weakest ones. Finally, the latent hardening parameters, extracted from the discrete dislocation dynamics simulations, are used in polycrystal simulations and the impact of finely accounting for latent hardening on predictions of the macroscopic anisotropic response is shown to be of significant importance.

[1]  Carlos N. Tomé,et al.  A dislocation-based constitutive law for pure Zr including temperature effects , 2008 .

[2]  S. Morozumi,et al.  {112̄2}〈1123〉 Slip system in magnesium , 1973 .

[3]  C. Tomé,et al.  Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium , 2012 .

[4]  C. H. Cáceres,et al.  Strain hardening behaviour and the Taylor factor of pure magnesium , 2008 .

[5]  Jian Wang,et al.  A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms , 2013 .

[6]  J. Stohr,et al.  Etude en microscopie electronique du glissement pyramidal {1122} 〈1123〉 dans le magnesium , 1972 .

[7]  István Groma,et al.  Mesoscopic scale simulation of dislocation dynamics in fcc metals: Principles and applications , 1998 .

[8]  Ladislas P. Kubin,et al.  On the nature of attractive dislocation crossed states , 2002 .

[9]  P. Chung,et al.  The strength of binary junctions in hexagonal close-packed crystals , 2013 .

[10]  G. Cailletaud,et al.  Modeling of latent hardening produced by complex loading paths in FCC alloys , 2013 .

[11]  F. F. Lavrentev,et al.  Relation of dislocation density in different slip systems to work hardening parameters for magnesium crystals , 1975 .

[12]  I. Beyerlein,et al.  The role of elastic anisotropy on plasticity in hcp metals: a three-dimensional dislocation dynamics study , 2010 .

[13]  Athanasios Arsenlis,et al.  Enabling strain hardening simulations with dislocation dynamics , 2006 .

[14]  A. Couret,et al.  Dislocation movements controlled by friction forces and local pinning in metals and alloys , 2002 .

[15]  F. F. Lavrentev The type of dislocation interaction as the factor determining work hardening , 1980 .

[16]  Yanyao Jiang,et al.  Co-zone {1¯012} Twin Interaction in Magnesium Single Crystal , 2014 .

[17]  D. Wilsdorf A NEW THEORY OF WORKHARDENING , 1961 .

[18]  G. Proust,et al.  Modeling texture, twinning and hardening evolution during deformation of hexagonal materials , 2007 .

[19]  L. Capolungo Dislocation junction formation and strength in magnesium , 2011 .

[20]  I. Beyerlein,et al.  A polycrystal plasticity model for predicting mechanical response and texture evolution during strain-path changes: Application to beryllium , 2013 .

[21]  V. Vítek,et al.  Atomic-scale modeling of dislocations and related properties in the hexagonal-close-packed metals , 2002 .

[22]  M. Makin,et al.  DISLOCATION MOVEMENT THROUGH RANDOM ARRAYS OF OBSTACLES , 1966 .

[23]  P. M. Anderson Theory of dislocations , 1953 .

[24]  Ronan Madec Des intersections entre dislocations à la plasticité du monocristal CFC : étude par dynamique des dislocations , 2001 .

[25]  I. Beyerlein,et al.  On the interaction between slip dislocations and twins in HCP Zr , 2009 .

[26]  Laurent Capolungo,et al.  Hybrid dislocation dynamics based strain hardening constitutive model , 2013 .

[27]  Christopher R. Weinberger,et al.  A non-singular continuum theory of dislocations , 2006 .

[28]  L. Kubin,et al.  Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals: application to zirconium , 2004 .

[29]  A. Cottrell Theory of dislocations , 1949 .

[30]  Frédéric Barlat,et al.  Modelling the plastic behaviour of metals under complex loading conditions , 2011 .

[31]  Thierry Hoc,et al.  Physical analyses of crystal plasticity by DD simulations , 2006 .

[32]  Nasr M. Ghoniem,et al.  Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation , 2000 .

[33]  C. Tomé,et al.  Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet , 2008 .

[34]  D Rodney,et al.  The Role of Collinear Interaction in Dislocation-Induced Hardening , 2003, Science.

[35]  R. Reed-hill,et al.  Additional modes of deformation twinning in magnesium , 1957 .

[36]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[37]  Z. S. Basinski Thermally activated glide in face-centred cubic metals and its application to the theory of strain hardening , 1959 .

[38]  Lallit Anand,et al.  A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B , 2003 .

[39]  Thierry Hoc,et al.  Modeling dislocation storage rates and mean free paths in face-centered cubic crystals , 2008 .

[40]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[41]  F. F. Lavrentev,et al.  Effect of „Forest” Dislocations in the {1122} 〈1123〉 system on hardening in Mg single crystals under basal slip , 1975 .

[42]  I. Beyerlein,et al.  STOCHASTIC PROCESSES OF {1012} DEFORMATION TWINNING IN HEXAGONAL CLOSE-PACKED POLYCRYSTALLINE ZIRCONIUM AND MAGNESIUM , 2011 .

[43]  L. Kubin,et al.  Collinear interactions of dislocations and slip systems , 2005 .

[44]  V. Bulatov,et al.  Connecting atomistic and mesoscale simulations of crystal plasticity , 1998, Nature.

[45]  G. Saada Sur le durcissement dû à la recombinaison des dislocations , 1960 .

[46]  A. J. E. Foreman,et al.  The bowing of a dislocation segment , 1967 .

[47]  Benoit Devincre,et al.  Dislocation dynamics simulations of slip systems interactions and forest strengthening in ice single crystal , 2013 .

[48]  Benoit Devincre,et al.  Solute friction and forest interaction , 2006 .

[49]  I. Beyerlein,et al.  An atomistically-informed dislocation dynamics model for the plastic anisotropy and tension–compression asymmetry of BCC metals , 2011 .

[50]  André Zaoui,et al.  Multislip in f.c.c. crystals a theoretical approach compared with experimental data , 1982 .

[51]  Benoit Devincre,et al.  Slip systems interactions in α-iron determined by dislocation dynamics simulations , 2009 .

[52]  M. Horstemeyer,et al.  Dislocation motion in magnesium: a study by molecular statics and molecular dynamics , 2009 .