Recruitment of Scribble to the Synaptic Scaffolding Complex Requires GUK-holder, a Novel DLG Binding Protein

BACKGROUND Membrane-associated guanylate kinases (MAGUKs), such as Discs-Large (DLG), play critical roles in synapse maturation by regulating the assembly of synaptic multiprotein complexes. Previous studies have revealed a genetic interaction between DLG and another PDZ scaffolding protein, SCRIBBLE (SCRIB), during the establishment of cell polarity in developing epithelia. A possible interaction between DLG and SCRIB at synaptic junctions has not yet been addressed. Likewise, the biochemical nature of this interaction remains elusive, raising questions regarding the mechanisms by which the actions of both proteins are coordinated. RESULTS Here we report the isolation of a new DLG-interacting protein, GUK-holder, that interacts with the GUK domain of DLG and which is dynamically expressed during synaptic bouton budding. We also show that at Drosophila synapses DLG colocalizes with SCRIB and that this colocalization is likely to be mediated by direct interactions between GUKH and the PDZ2 domain of SCRIB. We show that DLG, GUKH, and SCRIB form a tripartite complex at synapses, in which DLG and GUKH are required for the proper synaptic localization of SCRIB. CONCLUSIONS Our results provide a mechanism by which developmentally important PDZ-mediated complexes are associated at the synapse.

[1]  M. Sheng,et al.  Essential Role for dlg in Synaptic Clustering of Shaker K+ Channels In Vivo , 1997, The Journal of Neuroscience.

[2]  E. Gundelfinger,et al.  Intramolecular interactions regulate SAP97 binding to GKAP , 2000, The EMBO journal.

[3]  P. Worley,et al.  Coupling of mGluR/Homer and PSD-95 Complexes by the Shank Family of Postsynaptic Density Proteins , 1999, Neuron.

[4]  Douglas N. Robinson,et al.  Drosophila Kelch Is an Oligomeric Ring Canal Actin Organizer , 1997, The Journal of cell biology.

[5]  W. Lim,et al.  Structure of the Enabled/VASP Homology 1 Domain–Peptide Complex A Key Component in the Spatial Control of Actin Assembly , 1999, Cell.

[6]  Bo Guan,et al.  The Drosophila tumor suppressor gene, dlg, is involved in structural plasticity at a glutamatergic synapse , 1996, Current Biology.

[7]  V. Budnik,et al.  Insulin-like receptor and insulin-like peptide are localized at neuromuscular junctions in Drosophila , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Y. Koh,et al.  Regulation of DLG Localization at Synapses by CaMKII-Dependent Phosphorylation , 1999, Cell.

[9]  P. Worley,et al.  Shank, a Novel Family of Postsynaptic Density Proteins that Binds to the NMDA Receptor/PSD-95/GKAP Complex and Cortactin , 1999, Neuron.

[10]  Y. Takai,et al.  SAPAPs. A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. , 1997, The Journal of biological chemistry.

[11]  Peter J. Bryant,et al.  The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions , 1991, Cell.

[12]  T. Südhof,et al.  Binding of neuroligins to PSD-95. , 1997, Science.

[13]  Richard D Fetter,et al.  Genetic Dissection of Structural and Functional Components of Synaptic Plasticity. I. Fasciclin II Controls Synaptic Stabilization and Growth , 1996, Neuron.

[14]  C. Garner,et al.  SAP90 Binds and Clusters Kainate Receptors Causing Incomplete Desensitization , 1998, Neuron.

[15]  M. Sheng,et al.  An Intramolecular Interaction between Src Homology 3 Domain and Guanylate Kinase-Like Domain Required for Channel Clustering by Postsynaptic Density-95/SAP90 , 2000, The Journal of Neuroscience.

[16]  Richard D. Fetter,et al.  Watching a Synapse Grow Noninvasive Confocal Imaging of Synaptic Growth in Drosophila , 1999, Neuron.

[17]  N. Perrimon,et al.  Localization of apical epithelial determinants by the basolateral PDZ protein Scribble , 2000, Nature.

[18]  M. Sheng,et al.  Heteromultimerization and NMDA Receptor-Clustering Activity of Chapsyn-110, a Member of the PSD-95 Family of Proteins , 1996, Neuron.

[19]  E. Gundelfinger,et al.  Synaptic targeting and localization of Discs-large is a stepwise process controlled by different domains of the protein , 2000, Current Biology.

[20]  Bo Guan,et al.  Regulation of Synapse Structure and Function by the Drosophila Tumor Suppressor Gene dlg , 1996, Neuron.

[21]  M. Sheng,et al.  GKAP, a Novel Synaptic Protein That Interacts with the Guanylate Kinase-like Domain of the PSD-95/SAP90 Family of Channel Clustering Molecules , 1997, The Journal of cell biology.

[22]  D. Bredt,et al.  Identification of an Intramolecular Interaction between the SH3 and Guanylate Kinase Domains of PSD-95* , 1999, The Journal of Biological Chemistry.

[23]  T. Pollard,et al.  Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  T. Pollard,et al.  Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins , 2000, Nature.

[25]  K. Fujisawa,et al.  Citron, a Rho-Target, Interacts with PSD-95/SAP-90 at Glutamatergic Synapses in the Thalamus , 1999, The Journal of Neuroscience.

[26]  E. Reinherz,et al.  GAKIN, a Novel Kinesin-like Protein Associates with the Human Homologue of the Drosophila Discs Large Tumor Suppressor in T Lymphocytes* , 2000, The Journal of Biological Chemistry.

[27]  V. Budnik,et al.  Drosophila larval neuromuscular junction: Molecular components and mechanisms underlying synaptic plasticity , 2000, Microscopy research and technique.

[28]  D Bilder,et al.  Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. , 2000, Science.

[29]  K. J. Sepp,et al.  Conversion of lacZ enhancer trap lines to GAL4 lines using targeted transposition in Drosophila melanogaster. , 1999, Genetics.

[30]  J. Bockmann,et al.  Synaptic Scaffolding Proteins in Rat Brain , 2001, The Journal of Biological Chemistry.

[31]  H. Ralston,et al.  Localization of Postsynaptic Density-93 to Dendritic Microtubules and Interaction with Microtubule-Associated Protein 1A , 1998, The Journal of Neuroscience.

[32]  K. Miura,et al.  N‐WASP, a novel actin‐depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2‐dependent manner downstream of tyrosine kinases. , 1996, The EMBO journal.

[33]  L. Cantley,et al.  Recognition of Unique Carboxyl-Terminal Motifs by Distinct PDZ Domains , 1997, Science.

[34]  C. Garner,et al.  Molecular determinants of presynaptic active zones , 2000, Current Opinion in Neurobiology.

[35]  M. Sheng,et al.  Regulation of Dendritic Spine Morphology by SPAR, a PSD-95-Associated RapGAP , 2001, Neuron.

[36]  T. Godenschwege,et al.  Invertebrate Synapsins: A Single Gene Codes for Several Isoforms in Drosophila , 1996, The Journal of Neuroscience.

[37]  Hugo J. Bellen,et al.  Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca2+-activated neurotransmitter release , 1993, Cell.

[38]  L. Langeberg,et al.  Scar/WAVE‐1, a Wiskott–Aldrich syndrome protein, assembles an actin‐associated multi‐kinase scaffold , 2000, The EMBO journal.

[39]  S. Benzer,et al.  Paralysis and early death in cysteine string protein mutants of Drosophila. , 1994, Science.

[40]  T. Boeckers,et al.  Proline-rich synapse-associated proteins ProSAP1 and ProSAP2 interact with synaptic proteins of the SAPAP/GKAP family. , 1999, Biochemical and biophysical research communications.

[41]  M. Kennedy,et al.  A Synaptic Ras-GTPase Activating Protein (p135 SynGAP) Inhibited by CaM Kinase II , 1998, Neuron.

[42]  P. Seeburg,et al.  Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. , 1995, Science.

[43]  C. Garner,et al.  Synaptic Clustering of the Cell Adhesion Molecule Fasciclin II by Discs-Large and its Role in the Regulation of Presynaptic Structure , 1997, Neuron.