On Fibonacci numbers as sum of powers of two consecutive Tribonacci numbers

[1]  Mahadi Ddamulira Tribonacci numbers that are concatenations of two repdigits , 2020, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[2]  Florian Luca,et al.  On a conjecture about repdigits in k-generalized Fibonacci sequences , 2013 .

[3]  F. Luca,et al.  An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers , 2011 .

[4]  Gregory P. Dresden,et al.  A Simplified Binet Formula for k-Generalized Fibonacci Numbers , 2009, J. Integer Seq..

[5]  Maurice Mignotte,et al.  Fibonacci numbers at most one away from a perfect power , 2008 .

[6]  Attila Pethö,et al.  A Generalization of a Theorem of Baker and Davenport , 1998 .

[7]  E. Matveev,et al.  An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers , 1998 .

[8]  P. Trojovský,et al.  On the sum of squares of consecutive $k$-bonacci numbers which are $l$-bonacci numbers , 2019, Colloquium Mathematicum.

[9]  Ana Paula Chaves,et al.  A DIOPHANTINE EQUATION RELATED TO THE SUM OF SQUARES OF CONSECUTIVE k-GENERALIZED FIBONACCI NUMBERS , 2014 .

[10]  Carlos Alexis Gómez Ruiz,et al.  An exponential Diophantine equation related to the sum of powers of two consecutive k-generalized Fibonacci numbers , 2014 .

[11]  Jhon J. Bravo,et al.  Powers of Two in Generalized Fibonacci Sequences , 2012 .

[12]  E M Matveev An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers , 1998 .

[13]  D. A. Wolfram Solving generalized Fibonacci recurrences , 1998 .