Malaria Epigenetics.

Organisms with identical genome sequences can show substantial differences in their phenotypes owing to epigenetic changes that result in different use of their genes. Epigenetic regulation of gene expression plays a key role in the control of several fundamental processes in the biology of malaria parasites, including antigenic variation and sexual differentiation. Some of the histone modifications and chromatin-modifying enzymes that control the epigenetic states of malaria genes have been characterized, and their functions are beginning to be unraveled. The fundamental principles of epigenetic regulation of gene expression appear to be conserved between malaria parasites and model eukaryotes, but important peculiarities exist. Here, we review the current knowledge of malaria epigenetics and discuss how it can be exploited for the development of new molecular markers and new types of drugs that may contribute to malaria eradication efforts.

[1]  E. Ashley,et al.  Malaria , 2018, The Lancet.

[2]  Peter A. DiMaggio,et al.  Plasmodium falciparum PfSET7: enzymatic characterization and cellular localization of a novel protein methyltransferase in sporozoite, liver and erythrocytic stage parasites , 2016, Scientific Reports.

[3]  G. Fegan,et al.  Global selection of Plasmodium falciparum virulence antigen expression by host antibodies , 2016, Scientific Reports.

[4]  W. Pan,et al.  Dual regulatory effects of non-coding GC-rich elements on the expression of virulence genes in malaria parasites. , 2015, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[5]  M. Berriman,et al.  The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences , 2015, Nucleic acids research.

[6]  L. Ribas de Pouplana,et al.  Deciphering the principles that govern mutually exclusive expression of Plasmodium falciparum clag3 genes , 2015, Nucleic acids research.

[7]  J. Langhorne,et al.  Mosquitoes Reset Malaria Parasites , 2015, PLoS pathogens.

[8]  Kate M Broadbent,et al.  Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA , 2015, BMC Genomics.

[9]  Danny W. Wilson,et al.  A Plasmodium Falciparum Bromodomain Protein Regulates Invasion Gene Expression. , 2015, Cell host & microbe.

[10]  Qijun Chen,et al.  A Unique Virulence Gene Occupies a Principal Position in Immune Evasion by the Malaria Parasite Plasmodium falciparum , 2015, PLoS genetics.

[11]  M. Ferdig,et al.  Functional Analysis of Sirtuin Genes in Multiple Plasmodium falciparum Strains , 2015, PloS one.

[12]  G. von Heijne,et al.  RIFINs are adhesins implicated in severe Plasmodium falciparum malaria , 2015, Nature Medicine.

[13]  E. Yavin,et al.  Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum , 2015, Proceedings of the National Academy of Sciences.

[14]  J. Rayner,et al.  Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand Interactions during Plasmodium falciparum Invasion of Erythrocytes , 2015, PLoS pathogens.

[15]  N. A. Malmquist,et al.  Histone Methyltransferase Inhibitors Are Orally Bioavailable, Fast-Acting Molecules with Activity against Different Species Causing Malaria in Humans , 2014, Antimicrobial Agents and Chemotherapy.

[16]  Bradley I. Coleman,et al.  A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. , 2014, Cell host & microbe.

[17]  Zbynek Bozdech,et al.  Heterochromatin protein 1 secures survival and transmission of malaria parasites. , 2014, Cell host & microbe.

[18]  P. Preiser,et al.  STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. , 2014, Cell host & microbe.

[19]  R. Coppel,et al.  A lysine‐rich membrane‐associated PHISTb protein involved in alteration of the cytoadhesive properties of Plasmodium falciparum‐infected red blood cells , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[20]  M. Erat,et al.  A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[21]  C. Hon,et al.  Exonuclease-mediated degradation of nascent RNA silences genes linked to severe malaria , 2014, Nature.

[22]  Stefano Lonardi,et al.  DNA-encoded nucleosome occupancy is associated with transcription levels in the human malaria parasite Plasmodium falciparum , 2014, BMC Genomics.

[23]  M. Petter,et al.  Epigenetic regulation of the Plasmodium falciparum genome. , 2014, Briefings in functional genomics.

[24]  J. Beeson,et al.  Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates , 2014, Cellular and Molecular Life Sciences.

[25]  L. Kats,et al.  An exported kinase (FIKK4.2) that mediates virulence-associated changes in Plasmodium falciparum-infected red blood cells. , 2014, International journal for parasitology.

[26]  J. Rayner,et al.  Plasmodium falciparum Erythrocyte Invasion: Combining Function with Immune Evasion , 2014, PLoS pathogens.

[27]  S. Desai Why do malaria parasites increase host erythrocyte permeability? , 2014, Trends in parasitology.

[28]  Roger Le Grand,et al.  Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures , 2014, Nature Medicine.

[29]  Ellen Bushell,et al.  A cascade of DNA binding proteins for sexual commitment and development in Plasmodium , 2014, Nature.

[30]  C. Pandarinath,et al.  Recruitment of PfSET2 by RNA Polymerase II to Variant Antigen Encoding Loci Contributes to Antigenic Variation in P. falciparum , 2014, PLoS pathogens.

[31]  S. Lonardi,et al.  Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum. , 2013, Cell host & microbe.

[32]  M. Llinás,et al.  Epigenetic switches in clag3 genes mediate blasticidin S resistance in malaria parasites , 2013, Cellular microbiology.

[33]  Thor G. Theander,et al.  PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum , 2013, Nature.

[34]  K. Wollenberg,et al.  An Epigenetic Antimalarial Resistance Mechanism Involving Parasite Genes Linked to Nutrient Uptake* , 2013, The Journal of Biological Chemistry.

[35]  A. Cowman,et al.  Modulation of PF10_0355 (MSPDBL2) Alters Plasmodium falciparum Response to Antimalarial Drugs , 2013, Antimicrobial Agents and Chemotherapy.

[36]  Zbynek Bozdech,et al.  H2A.Z and H2B.Z double‐variant nucleosomes define intergenic regions and dynamically occupy var gene promoters in the malaria parasite Plasmodium falciparum , 2013, Molecular microbiology.

[37]  S. Kishore,et al.  Horizontal gene transfer of epigenetic machinery and evolution of parasitism in the malaria parasite Plasmodium falciparum and other apicomplexans , 2013, BMC Evolutionary Biology.

[38]  Zbynek Bozdech,et al.  Dynamic Epigenetic Regulation of Gene Expression during the Life Cycle of Malaria Parasite Plasmodium falciparum , 2013, PLoS pathogens.

[39]  H. Stunnenberg,et al.  H2A.Z/H2B.Z double-variant nucleosomes inhabit the AT-rich promoter regions of the Plasmodium falciparum genome , 2013, Molecular microbiology.

[40]  A. Vaquero,et al.  A View on the Role of Epigenetics in the Biology of Malaria Parasites , 2012, PLoS pathogens.

[41]  T. Theander,et al.  Expression of a type B RIFIN in Plasmodium falciparum merozoites and gametes , 2012, Malaria Journal.

[42]  W. Nguitragool,et al.  Solute Restriction Reveals an Essential Role for clag3-Associated Channels in Malaria Parasite Nutrient Acquisition , 2012, Molecular Pharmacology.

[43]  R. Dzikowski,et al.  Insulator-like pairing elements regulate silencing and mutually exclusive expression in the malaria parasite Plasmodium falciparum , 2012, Proceedings of the National Academy of Sciences.

[44]  D. Kwiatkowski,et al.  Population Genomic Scan for Candidate Signatures of Balancing Selection to Guide Antigen Characterization in Malaria Parasites , 2012, PLoS genetics.

[45]  N. A. Malmquist,et al.  Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum , 2012, Proceedings of the National Academy of Sciences.

[46]  Kathrin Witmer,et al.  Identification of a cis-acting DNA–protein interaction implicated in singular var gene choice in Plasmodium falciparum , 2012, Cellular microbiology.

[47]  H. Stunnenberg,et al.  Plasmodium falciparum centromeres display a unique epigenetic makeup and cluster prior to and during schizogony , 2012, Cellular microbiology.

[48]  S. Martínez-Calvillo,et al.  Two long non-coding RNAs generated from subtelomeric regions accumulate in a novel perinuclear compartment in Plasmodium falciparum. , 2012, Molecular and biochemical parasitology.

[49]  Brian J. Smith,et al.  Insights into Duffy Binding-like Domains through the Crystal Structure and Function of the Merozoite Surface Protein MSPDBL2 from Plasmodium falciparum* , 2012, The Journal of Biological Chemistry.

[50]  Thomas S. Rask,et al.  Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children , 2012, Proceedings of the National Academy of Sciences.

[51]  Zbynek Bozdech,et al.  A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells , 2012, Proceedings of the National Academy of Sciences.

[52]  Joel H. Janes,et al.  A restricted subset of var genes mediates adherence of Plasmodium falciparum-infected erythrocytes to brain endothelial cells , 2012, Proceedings of the National Academy of Sciences.

[53]  Evarist Planet,et al.  Transcriptional variation in the malaria parasite Plasmodium falciparum , 2012, Genome research.

[54]  C. Bountra,et al.  Epigenetic protein families: a new frontier for drug discovery , 2012, Nature Reviews Drug Discovery.

[55]  Zbynek Bozdech,et al.  Comparative Gene Expression Profiling of P. falciparum Malaria Parasites Exposed to Three Different Histone Deacetylase Inhibitors , 2012, PloS one.

[56]  J. Rayner,et al.  PfSET10, a Plasmodium falciparum methyltransferase, maintains the active var gene in a poised state during parasite division. , 2012, Cell host & microbe.

[57]  G. Bouyer,et al.  Plasmodium falciparum STEVOR proteins impact erythrocyte mechanical properties. , 2012, Blood.

[58]  A. Haque,et al.  HDAC inhibitors in parasitic diseases , 2012, Immunology and cell biology.

[59]  Andrew M. Simons,et al.  Modes of response to environmental change and the elusive empirical evidence for bet hedging , 2011, Proceedings of the Royal Society B: Biological Sciences.

[60]  L. Aravind,et al.  Malaria Parasite clag3 Genes Determine Channel-Mediated Nutrient Uptake by Infected Red Blood Cells , 2011, Cell.

[61]  Alfred Cortés,et al.  Heterochromatin formation in bistable chromatin domains controls the epigenetic repression of clonally variant Plasmodium falciparum genes linked to erythrocyte invasion , 2011, Molecular microbiology.

[62]  Bradley I. Coleman,et al.  Functional analysis of epigenetic regulation of tandem RhopH1/clag genes reveals a role in Plasmodium falciparum growth , 2011, Molecular microbiology.

[63]  Teun Bousema,et al.  Epidemiology and Infectivity of Plasmodium falciparum and Plasmodium vivax Gametocytes in Relation to Malaria Control and Elimination , 2011, Clinical Microbiology Reviews.

[64]  S. Ralph,et al.  Expression of P. falciparum var Genes Involves Exchange of the Histone Variant H2A.Z at the Promoter , 2011, PLoS pathogens.

[65]  Yongyuth Yuthavong,et al.  A Research Agenda for Malaria Eradication: Drugs , 2011, PLoS medicine.

[66]  Ogobara K. Doumbo,et al.  A Research Agenda to Underpin Malaria Eradication , 2011, PLoS medicine.

[67]  H. Stunnenberg,et al.  H2A.Z Demarcates Intergenic Regions of the Plasmodium falciparum Epigenome That Are Dynamically Marked by H3K9ac and H3K4me3 , 2010, PLoS pathogens.

[68]  G. Ning,et al.  The MYST family histone acetyltransferase regulates gene expression and cell cycle in malaria parasite Plasmodium falciparum , 2010, Molecular microbiology.

[69]  H. Luján,et al.  Disruption of antigenic variation is crucial for effective parasite vaccine , 2010, Nature Medicine.

[70]  D. Conway,et al.  Erythrocyte invasion and merozoite ligand gene expression in severe and mild Plasmodium falciparum malaria. , 2010, The Journal of infectious diseases.

[71]  Catherine Vaquero,et al.  In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum , 2010, BMC Genomics.

[72]  K. Zhao,et al.  Epigenetic control of the variable expression of a Plasmodium falciparum receptor protein for erythrocyte invasion , 2010, Proceedings of the National Academy of Sciences.

[73]  Blaise T. F. Alako,et al.  Plasmodium falciparum Heterochromatin Protein 1 Marks Genomic Loci Linked to Phenotypic Variation of Exported Virulence Factors , 2009, PLoS pathogens.

[74]  Blaise T. F. Alako,et al.  Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum , 2009, Proceedings of the National Academy of Sciences.

[75]  Christopher J. Tonkin,et al.  Sir2 Paralogues Cooperate to Regulate Virulence Genes and Antigenic Variation in Plasmodium falciparum , 2009, PLoS biology.

[76]  S. Martínez-Calvillo,et al.  Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes , 2009, Nucleic acids research.

[77]  Jose-Juan Lopez-Rubio,et al.  Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. , 2009, Cell host & microbe.

[78]  Alfred Cortés Switching Plasmodium falciparum genes on and off for erythrocyte invasion. , 2008, Trends in parasitology.

[79]  Yongyuth Yuthavong,et al.  A Genetically Hard-Wired Metabolic Transcriptome in Plasmodium falciparum Fails to Mount Protective Responses to Lethal Antifolates , 2008, PLoS pathogens.

[80]  Yingyao Zhou,et al.  A systematic approach to understand the mechanism of action of the bisthiazolium compound T4 on the human malaria parasite, Plasmodium falciparum , 2008, BMC Genomics.

[81]  O. Kuipers,et al.  Bistability, epigenetics, and bet-hedging in bacteria. , 2008, Annual review of microbiology.

[82]  Qi Fan,et al.  Histone lysine methyltransferases and demethylases in Plasmodium falciparum. , 2008, International journal for parasitology.

[83]  X. Su,et al.  Histone Acetyltransferase Inhibitor Anacardic Acid Causes Changes in Global Gene Expression during In Vitro Plasmodium falciparum Development , 2008, Eukaryotic Cell.

[84]  Alisson M. Gontijo,et al.  5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites , 2007, Molecular microbiology.

[85]  T. Wellems,et al.  Mechanisms underlying mutually exclusive expression of virulence genes by malaria parasites , 2007, EMBO reports.

[86]  M. Duraisingh,et al.  Plasmodium falciparum Sir2: an Unusual Sirtuin with Dual Histone Deacetylase and ADP-Ribosyltransferase Activity , 2007, Eukaryotic Cell.

[87]  A. Ivens,et al.  Epigenetic Silencing of Plasmodium falciparum Genes Linked to Erythrocyte Invasion , 2007, PLoS pathogens.

[88]  M. Berriman,et al.  Differential var gene expression in the organs of patients dying of falciparum malaria , 2007, Molecular microbiology.

[89]  Manuel Llinás,et al.  Mechanisms of gene regulation in Plasmodium. , 2007, The American journal of tropical medicine and hygiene.

[90]  C. Lavazec,et al.  Expression switching in the stevor and Pfmc‐2TM superfamilies in Plasmodium falciparum , 2007, Molecular microbiology.

[91]  Jun Miao,et al.  PfGCN5-Mediated Histone H3 Acetylation Plays a Key Role in Gene Expression in Plasmodium falciparum , 2007, Eukaryotic Cell.

[92]  S. Kyes,et al.  Plasmodium falciparum var gene expression is developmentally controlled at the level of RNA polymerase II‐mediated transcription initiation , 2007, Molecular microbiology.

[93]  Thanat Chookajorn,et al.  Epigenetic memory at malaria virulence genes , 2007, Proceedings of the National Academy of Sciences.

[94]  M. Nunes,et al.  A novel protein kinase family in Plasmodium falciparum is differentially transcribed and secreted to various cellular compartments of the host cell , 2007, Molecular microbiology.

[95]  Elena R. Lozovsky,et al.  Duplication, gene conversion, and genetic diversity in the species-specific acyl-CoA synthetase gene family of Plasmodium falciparum. , 2006, Molecular and biochemical parasitology.

[96]  T. Theander,et al.  Differential Expression of var Gene Groups Is Associated with Morbidity Caused by Plasmodium falciparum Infection in Tanzanian Children , 2006, Infection and Immunity.

[97]  Terence P Speed,et al.  Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites , 2006, Genome Biology.

[98]  Alexander G. Maier,et al.  Molecular Mechanism for Switching of P. falciparum Invasion Pathways into Human Erythrocytes , 2005, Science.

[99]  M. Wahlgren,et al.  SURFIN is a polymorphic antigen expressed on Plasmodium falciparum merozoites and infected erythrocytes , 2005, The Journal of experimental medicine.

[100]  S. Ralph,et al.  Antigenic variation in Plasmodium falciparum is associated with movement of var loci between subnuclear locations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Alisson M. Gontijo,et al.  Telomeric Heterochromatin Propagation and Histone Acetylation Control Mutually Exclusive Expression of Antigenic Variation Genes in Malaria Parasites , 2005, Cell.

[102]  Manoj T. Duraisingh,et al.  Heterochromatin Silencing and Locus Repositioning Linked to Regulation of Virulence Genes in Plasmodium falciparum , 2005, Cell.

[103]  John R Yates,et al.  A Plasmodium gene family encoding Maurer's cleft membrane proteins: structural properties and expression profiling. , 2004, Genome research.

[104]  S. Sharp,et al.  Plasmodium falciparum Associated with Severe Childhood Malaria Preferentially Expresses PfEMP1 Encoded by Group A var Genes , 2004, The Journal of experimental medicine.

[105]  L. Cui,et al.  Plasmodium falciparum Histone Acetyltransferase, a Yeast GCN5 Homologue Involved in Chromatin Remodeling , 2004, Eukaryotic Cell.

[106]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[107]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[108]  Danny W. Wilson,et al.  Ten families of variant genes encoded in subtelomeric regions of multiple chromosomes of Plasmodium chabaudi, a malaria species that undergoes antigenic variation in the laboratory mouse , 2003, Molecular microbiology.

[109]  J. Rayner,et al.  Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes , 2003, The EMBO journal.

[110]  M. Grainger,et al.  Variation in the Expression of a Plasmodium falciparum Protein Family Implicated in Erythrocyte Invasion , 2002, Infection and Immunity.

[111]  Ogobara K. Doumbo,et al.  The pathogenic basis of malaria , 2002, Nature.

[112]  T. Wellems,et al.  Malaria: Cooperative silencing elements in var genes , 2001, Nature.

[113]  Bart Barrell,et al.  A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax , 2001, Nature.

[114]  Thomas E. Wellems,et al.  Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum , 2000, Nature.

[115]  A. Cowman,et al.  Targeted disruption of an erythrocyte binding antigen in Plasmodium falciparum is associated with a switch toward a sialic acid-independent pathway of invasion. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[116]  M. Wahlgren,et al.  Small, Clonally Variant Antigens Expressed on the Surface of the Plasmodium falciparum–Infected Erythrocyte Are Encoded by the rif Gene Family and Are the Target of Human Immune Responses , 1999, The Journal of experimental medicine.

[117]  S. Kyes,et al.  Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[118]  M. Joshi,et al.  Molecular cloning and nuclear localization of a histone deacetylase homologue in Plasmodium falciparum. , 1999, Molecular and biochemical parasitology.

[119]  M. Galinski,et al.  Antigenic variation in malaria: a 3' genomic alteration associated with the expression of a P. knowlesi variant antigen. , 1999, Molecular cell.

[120]  P. Rathod,et al.  Variations in frequencies of drug resistance in Plasmodium falciparum. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[121]  Theodore F. Taraschi,et al.  Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes , 1995, Cell.

[122]  Joseph D. Smith,et al.  Switches in expression of plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes , 1995, Cell.

[123]  X. Su,et al.  The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of plasmodium falciparum-infected erythrocytes , 1995, Cell.

[124]  J. Weber Interspersed repetitive DNA from Plasmodium falciparum. , 1988, Molecular and biochemical parasitology.

[125]  D. Milner Malaria Pathogenesis. , 2018, Cold Spring Harbor perspectives in medicine.

[126]  M. Wahlgren,et al.  NAOSITE : Nagasaki University ' s Academic Output SITE , 2017 .

[127]  Ankit Gupta,et al.  The conserved clag multigene family of malaria parasites: essential roles in host-pathogen interaction. , 2015, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[128]  Manuel Llinás,et al.  A transcriptional switch underlies commitment to sexual development in malaria parasites , 2014 .

[129]  Christopher J. Tonkin,et al.  Potential epigenetic regulatory proteins localise to distinct nuclear sub-compartments in Plasmodium falciparum. , 2010, International journal for parasitology.

[130]  L. Aravind,et al.  Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. , 2008, International journal for parasitology.

[131]  M. Barrett,et al.  Plasmodium interspersed repeats: the major multigene superfamily of malaria parasites. , 2004, Nucleic acids research.

[132]  A. Cowman,et al.  Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations , 2003, Nature Medicine.

[133]  S. Kyes,et al.  Antigenic variation at the infected red cell surface in malaria. , 2001, Annual review of microbiology.