3.15 – Otoacoustic Emissions

[1]  A. Nuttall,et al.  Two-tone distortion at different longitudinal locations on the basilar membrane , 2007, Hearing Research.

[2]  W. S. Rhode,et al.  Basilar membrane mechanics in the 6-9 kHz region of sensitive chinchilla cochleae. , 2007, The Journal of the Acoustical Society of America.

[3]  K. D. Karavitaki,et al.  Imaging electrically evoked micromechanical motion within the organ of corti of the excised gerbil cochlea. , 2007, Biophysical journal.

[4]  M. Ruggero,et al.  Similarity of Traveling-Wave Delays in the Hearing Organs of Humans and Other Tetrapods , 2007, Journal for the Association for Research in Otolaryngology.

[5]  Christopher A Shera,et al.  Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. , 2007, The Journal of the Acoustical Society of America.

[6]  E. de Boer,et al.  Allen-Fahey and related experiments support the predominance of cochlear slow-wave otoacoustic emissions. , 2007, The Journal of the Acoustical Society of America.

[7]  Christopher A Shera,et al.  Cochlear traveling-wave amplification, suppression, and beamforming probed using noninvasive calibration of intracochlear distortion sources. , 2007, The Journal of the Acoustical Society of America.

[8]  Ian J. Russell,et al.  SHARPENED COCHLEAR TUNING IN A MOUSE WITH A GENETICALLY MODIFIED TECTORIAL MEMBRANE , 2007, Nature Neuroscience.

[9]  E. de Boer,et al.  Wave propagation patterns in a "classical" three-dimensional model of the cochlea. , 2007, The Journal of the Acoustical Society of America.

[10]  I. Russell,et al.  Properties of distortion product otoacoustic emissions and neural suppression tuning curves attributable to the tectorial membrane resonance. , 2007, The Journal of the Acoustical Society of America.

[11]  J. Guinan Olivocochlear Efferents: Anatomy, Physiology, Function, and the Measurement of Efferent Effects in Humans , 2006, Ear and hearing.

[12]  A. Nuttall,et al.  Group delay of acoustic emissions in the ear. , 2006, Journal of neurophysiology.

[13]  Robert Fettiplace,et al.  Active hair bundle movements in auditory hair cells , 2006, The Journal of physiology.

[14]  Nigel P. Cooper,et al.  Efferent‐mediated control of basilar membrane motion , 2006, The Journal of physiology.

[15]  Mary Ann Cheatham,et al.  Prestin and the cochlear amplifier , 2006, The Journal of physiology.

[16]  Robert Fettiplace,et al.  Depolarization of Cochlear Outer Hair Cells Evokes Active Hair Bundle Motion by Two Mechanisms , 2006, The Journal of Neuroscience.

[17]  L. Heller,et al.  Low-level otoacoustic emissions may predict susceptibility to noise-induced hearing loss. , 2006, The Journal of the Acoustical Society of America.

[18]  Rahul Sarpeshkar,et al.  Fast cochlear amplification with slow outer hair cells , 2006, Hearing Research.

[19]  A. Nuttall,et al.  Cochlear compression wave: an implication of the Allen-Fahey experiment. , 2006, The Journal of the Acoustical Society of America.

[20]  P. Fahey,et al.  Mechanism for bandpass frequency characteristic in distortion product otoacoustic emission generation. , 2006, The Journal of the Acoustical Society of America.

[21]  A. Nuttall,et al.  Spontaneous Basilar-Membrane Oscillation (SBMO) and Coherent Reflection , 2006, Journal of the Association for Research in Otolaryngology.

[22]  A J Hudspeth,et al.  Mechanical responses of the organ of corti to acoustic and electrical stimulation in vitro. , 2005, Biophysical journal.

[23]  Ian J. Russell,et al.  A self-mixing laser-diode interferometer for measuring basilar membrane vibrations without opening the cochlea , 2005, Journal of Neuroscience Methods.

[24]  Alberto Recio-Spinoso,et al.  Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. , 2005, The Journal of the Acoustical Society of America.

[25]  Robert Fettiplace,et al.  The Transduction Channel Filter in Auditory Hair Cells , 2005, The Journal of Neuroscience.

[26]  I. Russell,et al.  A deafness mutation isolates a second role for the tectorial membrane in hearing , 2005, Nature Neuroscience.

[27]  Christopher A Shera,et al.  Coherent reflection in a two-dimensional cochlea: Short-wave versus long-wave scattering in the generation of reflection-source otoacoustic emissions. , 2005, The Journal of the Acoustical Society of America.

[28]  Ian J. Russell,et al.  Dependence of the DPOAE amplitude pattern on acoustical biasing of the cochlear partition , 2005, Hearing Research.

[29]  J. Siegel,et al.  Level dependence of distortion-product otoacoustic emissions measured at high frequencies in humans. , 2005, The Journal of the Acoustical Society of America.

[30]  A. Nuttall,et al.  Spatial distribution of electrically induced high frequency vibration on basilar membrane , 2005, Hearing Research.

[31]  R. Fettiplace,et al.  Force generation by mammalian hair bundles supports a role in cochlear amplification , 2005, Nature.

[32]  D. H. Keefe,et al.  Simultaneous recording of stimulus-frequency and distortion-product otoacoustic emission input-output functions in human ears. , 2005, The Journal of the Acoustical Society of America.

[33]  A J Hudspeth,et al.  Ca2+ current–driven nonlinear amplification by the mammalian cochlea in vitro , 2005, Nature Neuroscience.

[34]  Ning Hu,et al.  Organ of Corti Potentials and the Motion of the Basilar Membrane , 2004, The Journal of Neuroscience.

[35]  M. Cheatham,et al.  Cochlear function in Prestin knockout mice , 2004, The Journal of physiology.

[36]  P. Avan,et al.  Frequency specificity of distortion-product otoacoustic emissions produced by high-level tones despite inefficient cochlear electromechanical feedback. , 2004, The Journal of the Acoustical Society of America.

[37]  J. Guinan,et al.  Otoacoustic emissions without somatic motility: can stereocilia mechanics drive the mammalian cochlea? , 2004, The Journal of the Acoustical Society of America.

[38]  Frank Jülicher,et al.  Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  B. Kollmeier,et al.  Fine structure of hearing threshold and loudness perception. , 2004, The Journal of the Acoustical Society of America.

[40]  E. de Boer,et al.  Spontaneous Basilar Membrane Oscillation and Otoacoustic Emission at 15 kHz in a Guinea Pig , 2004, Journal of the Association for Research in Otolaryngology.

[41]  E. de Boer,et al.  High-frequency electromotile responses in the cochlea. , 2004, The Journal of the Acoustical Society of America.

[42]  Christopher A Shera,et al.  Mechanisms of Mammalian Otoacoustic Emission and their Implications for the Clinical Utility of Otoacoustic Emissions , 2004, Ear and hearing.

[43]  Tianying Ren,et al.  Reverse propagation of sound in the gerbil cochlea , 2004, Nature Neuroscience.

[44]  Sietse M van Netten,et al.  Channel gating forces govern accuracy of mechano-electrical transduction in hair cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  I. Russell,et al.  The Development of a Single Frequency Place in the Mammalian Cochlea: The Cochlear Resonance in the Mustached Bat Pteronotus parnellii , 2003, The Journal of Neuroscience.

[46]  Manfred Kössl,et al.  Synchronization of a Nonlinear Oscillator: Processing the Cf Component of the Echo-Response Signal in the Cochlea of the Mustached Bat , 2003, The Journal of Neuroscience.

[47]  P. van Dijk,et al.  Physiological vulnerability of distortion product otoacoustic emissions from the amphibian ear. , 2003, The Journal of the Acoustical Society of America.

[48]  Christopher A. Shera,et al.  The origin of SFOAE microstructure in the guinea pig , 2003, Hearing Research.

[49]  Anthony Ricci,et al.  Active hair bundle movements and the cochlear amplifier. , 2003, Journal of the American Academy of Audiology.

[50]  Denis F. Fitzpatrick,et al.  Input-output functions for stimulus-frequency otoacoustic emissions in normal-hearing adult ears. , 2003, The Journal of the Acoustical Society of America.

[51]  Christopher A Shera,et al.  Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. , 2003, The Journal of the Acoustical Society of America.

[52]  A J Hudspeth,et al.  Spontaneous Oscillation by Hair Bundles of the Bullfrog's Sacculus , 2003, The Journal of Neuroscience.

[53]  Christopher A Shera,et al.  Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. , 2003, The Journal of the Acoustical Society of America.

[54]  I. Russell,et al.  A second, low-frequency mode of vibration in the intact mammalian cochlea. , 2003, The Journal of the Acoustical Society of America.

[55]  A. Hudspeth,et al.  Hair-bundle movements elicited by transepithelial electrical stimulation of hair cells in the sacculus of the bullfrog , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Paul Avan,et al.  Physiopathological significance of distortion-product otoacoustic emissions at 2f1-f2 produced by high- versus low-level stimuli. , 2003, The Journal of the Acoustical Society of America.

[57]  G. Long,et al.  Multiple internal reflections in the cochlea and their effect on DPOAE fine structure. , 2002, The Journal of the Acoustical Society of America.

[58]  T. Ren Longitudinal pattern of basilar membrane vibration in the sensitive cochlea , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[59]  D. Kemp,et al.  Otoacoustic emissions, their origin in cochlear function, and use. , 2002, British medical bulletin.

[60]  I. Russell,et al.  Modifications of a single saturating non-linearity account for post-onset changes in 2f1-f2 distortion product otoacoustic emission. , 2002, The Journal of the Acoustical Society of America.

[61]  Charles R. Steele,et al.  A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method , 2002, Hearing Research.

[62]  I. Russell,et al.  One source for distortion product otoacoustic emissions generated by low- and high-level primaries. , 2002, The Journal of the Acoustical Society of America.

[63]  Christopher A Shera,et al.  Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  A J Ricci,et al.  Mechanisms of Active Hair Bundle Motion in Auditory Hair Cells , 2002, The Journal of Neuroscience.

[65]  I. Russell,et al.  Origin of the bell-like dependence of the DPOAE amplitude on primary frequency ratio. , 2001, The Journal of the Acoustical Society of America.

[66]  A J Hudspeth,et al.  Comparison of a hair bundle's spontaneous oscillations with its response to mechanical stimulation reveals the underlying active process , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[67]  A J Hudspeth,et al.  Compressive nonlinearity in the hair bundle's active response to mechanical stimulation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[68]  P. Avan,et al.  Origin of cubic difference tones generated by high-intensity stimuli: effect of ischemia and auditory fatigue on the gerbil cochlea. , 2001, The Journal of the Acoustical Society of America.

[69]  D T Kemp,et al.  Wave and place fixed DPOAE maps of the human ear. , 2001, The Journal of the Acoustical Society of America.

[70]  Geoffrey A. Manley,et al.  In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[71]  R. Sisto,et al.  Spontaneous otoacoustic emissions and relaxation dynamics of long decay time OAEs in audiometrically normal and impaired subjects. , 2001, The Journal of the Acoustical Society of America.

[72]  A. Nuttall,et al.  Electrically evoked otoacoustic emissions from apical and basal perilymphatic electrode positions in the guinea pig cochlea , 2001, Hearing Research.

[73]  R. Kalluri,et al.  Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation. , 2001, The Journal of the Acoustical Society of America.

[74]  R. Salvi,et al.  Induction of spontaneous otoacoustic emissions in chinchillas from carboplatin-induced inner hair cell loss , 2000, Hearing Research.

[75]  G. Long,et al.  Modeling the combined effects of basilar membrane nonlinearity and roughness on stimulus frequency otoacoustic emission fine structure. , 2000, The Journal of the Acoustical Society of America.

[76]  G. Manley Cochlear mechanisms from a phylogenetic viewpoint. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[77]  P. Fahey,et al.  Nonlinear interactions that could explain distortion product interference response areas. , 2000, The Journal of the Acoustical Society of America.

[78]  A J Hudspeth,et al.  Active hair-bundle movements can amplify a hair cell's response to oscillatory mechanical stimuli. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[79]  L. Hood A Review of Objective Methods of Evaluating Auditory Neural Pathways , 1999, The Laryngoscope.

[80]  F. Telischi,et al.  Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f 2. I. Basic findings in rabbits , 1999, Hearing Research.

[81]  P. A. Dorn,et al.  Distortion product otoacoustic emission test performance for a priori criteria and for multifrequency audiometric standards. , 1999, Ear and hearing.

[82]  J. Guinan,et al.  Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. , 1999, The Journal of the Acoustical Society of America.

[83]  S Dhar,et al.  Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions. , 1999, The Journal of the Acoustical Society of America.

[84]  C. Talmadge,et al.  Ear canal reflectance in the presence of spontaneous otoacoustic emissions. I. Limit-cycle oscillator model. , 1998, The Journal of the Acoustical Society of America.

[85]  D H Keefe,et al.  Energy reflectance in the ear canal can exceed unity near spontaneous otoacoustic emission frequencies. , 1998, The Journal of the Acoustical Society of America.

[86]  Graeme K. Yates,et al.  Onset of basilar membrane non-linearity reflected in cubic distortion tone input-output functions , 1998, Hearing Research.

[87]  Hans-Ulrich Schnitzler,et al.  Suppression of distortion product otoacoustic emissions (DPOAE) near 2f1−f2 removes DP-gram fine structure—Evidence for a secondary generator , 1998 .

[88]  D H Keefe,et al.  Double-evoked otoacoustic emissions. II. Intermittent noise rejection, calibration and ear-canal measurements. , 1998, The Journal of the Acoustical Society of America.

[89]  Douglas H. Keefe,et al.  Double-evoked otoacoustic emissions. I. Measurement theory and nonlinear coherence , 1998 .

[90]  I. Russell,et al.  A descriptive model of the receptor potential nonlinearities generated by the hair cell mechanoelectrical transducer. , 1998, The Journal of the Acoustical Society of America.

[91]  K. Iwasa Current noise spectrum and capacitance due to the membrane motor of the outer hair cell: theory. , 1997, Biophysical journal.

[92]  K. Iwasa,et al.  Force generation in the outer hair cell of the cochlea. , 1997, Biophysical journal.

[93]  R. A. Schmiedt,et al.  Fine structure of the 2 f1-f2 acoustic distortion products: effects of primary level and frequency ratios. , 1997, The Journal of the Acoustical Society of America.

[94]  L. Robles,et al.  Two-tone distortion on the basilar membrane of the chinchilla cochlea. , 1997, Journal of neurophysiology.

[95]  A. Locke,et al.  The effect of the evanescent wave upon acoustic measurements in the human ear canal. , 1997, The Journal of the Acoustical Society of America.

[96]  A. M. Brown,et al.  Suppression of human acoustic distortion product: dual origin of 2f1-f2. , 1996, The Journal of the Acoustical Society of America.

[97]  P. Dijk,et al.  Spontaneous otoacoustic emissions in seven frog species , 1996, Hearing Research.

[98]  A. M. Brown,et al.  Two sources of acoustic distortion products from the human cochlea. , 1996, The Journal of the Acoustical Society of America.

[99]  F. Zeng,et al.  Distortion product otoacoustic emission suppression tuning curves in human adults and neonates , 1996, Hearing Research.

[100]  B L Lonsbury-Martin,et al.  Visualization of the onset of distortion-product otoacoustic emissions, and measurement of their latency. , 1996, The Journal of the Acoustical Society of America.

[101]  P. Dijk,et al.  Temperature dependence of spontaneous otoacoustic emissions in the edible frog (Rana esculenta) , 1996, Hearing Research.

[102]  R. Salvi,et al.  Selective inner hair cell loss does not alter distortion product otoacoustic emissions , 1996, Hearing Research.

[103]  A. Nuttall,et al.  Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions , 1995, Hearing Research.

[104]  G. Zweig,et al.  The origin of periodicity in the spectrum of evoked otoacoustic emissions. , 1995, The Journal of the Acoustical Society of America.

[105]  R. Salvi,et al.  Elevation of auditory thresholds by spontaneous cochlear oscillations , 1995, Nature.

[106]  D. Kemp,et al.  Distortion product otoacoustic emission delay measurement in human ears. , 1995, The Journal of the Acoustical Society of America.

[107]  D. Mountain,et al.  Electrically evoked basilar membrane motion. , 1995, The Journal of the Acoustical Society of America.

[108]  P. van Dijk,et al.  Correlation between amplitude and frequency fluctuations of spontaneous otoacoustic emissions. , 1994, The Journal of the Acoustical Society of America.

[109]  Glen K. Martin,et al.  Sensitivity of distortion-product otoacoustic emissions in humans to tonal over-exposure: Time course of recovery and effects of lowering L2 , 1994, Hearing Research.

[110]  W. J. Murphy,et al.  New off-line method for detecting spontaneous otoacoustic emissions in human subjects , 1993, Hearing Research.

[111]  L. J. Hood,et al.  Contralateral suppression of non-linear click-evoked otoacoustic emissions , 1993, Hearing Research.

[112]  Shuwan Xue,et al.  Acoustic enhancement of electrically-evoked otoacoustic emissions reflects basilar membrane tuning: Experiment results , 1993, Hearing Research.

[113]  A. J. Hudspeth,et al.  Auditory illusions and the single hair cell , 1993, Nature.

[114]  G. Zweig,et al.  Noninvasive measurement of the cochlear traveling-wave ratio. , 1993, The Journal of the Acoustical Society of America.

[115]  D. Kemp,et al.  Analyses of Mössbauer mechanical measurements indicate that the cochlea is mechanically active. , 1993, The Journal of the Acoustical Society of America.

[116]  William S. Rhode,et al.  Two-tone suppression and distortion production on the basilar membrane in the hook region of cat and guinea pig cochleae , 1993, Hearing Research.

[117]  D. Kemp,et al.  Suppression of stimulus frequency otoacoustic emissions. , 1993, The Journal of the Acoustical Society of America.

[118]  R. Probst,et al.  Suppression of the 2f 1−f 2 otoacoustic emission in humans , 1992, Hearing Research.

[119]  B L Lonsbury-Martin,et al.  Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit. II: Differential physiological vulnerability. , 1992, The Journal of the Acoustical Society of America.

[120]  A. Cody,et al.  Acoustic lesions in the mammalian cochlea: Implications for the spatial distribution of the ‘active process’ , 1992, Hearing Research.

[121]  B L Lonsbury-Martin,et al.  Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit: I. Differential dependence on stimulus parameters. , 1992, The Journal of the Acoustical Society of America.

[122]  G. Long,et al.  Are spontaneous otoacoustic emissions generated by self-sustained cochlear oscillators? , 1991, The Journal of the Acoustical Society of America.

[123]  R Probst,et al.  A review of otoacoustic emissions. , 1991, The Journal of the Acoustical Society of America.

[124]  A. M. Brown,et al.  The behavior of the acoustic distortion product, 2f1-f2, from the human ear and its relation to auditory sensitivity. , 1990, The Journal of the Acoustical Society of America.

[125]  Glen K. Martin,et al.  Distortion Product Emissions in Humans , 1990, The Annals of otology, rhinology & laryngology. Supplement.

[126]  Glen K. Martin,et al.  Distortion Product Emissions in Humans , 1990, The Annals of otology, rhinology & laryngology. Supplement.

[127]  William E. Brownell,et al.  Outer Hair Cell Electromotility and Otoacoustic Emissions , 1990, Ear and hearing.

[128]  D T Kemp,et al.  A Guide to the Effective Use of Otoacoustic Emissions , 1990, Ear and hearing.

[129]  M. Cheatham,et al.  Two-tone interactions in inner hair cell receptor potentials: AC versus DV effects , 1990, Hearing Research.

[130]  A. E. Hubbard,et al.  Rapid force production in the cochlea , 1989, Hearing Research.

[131]  P Dallos,et al.  Nonlinearities in cochlear receptor potentials and their origins. , 1989, The Journal of the Acoustical Society of America.

[132]  Hans Werner Strube,et al.  Evoked otoacoustic emissions as cochlear Bragg reflections , 1989, Hearing Research.

[133]  G. Long,et al.  Investigations into the nature of the association between threshold microstructure and otoacoustic emissions , 1988, Hearing Research.

[134]  G. Long,et al.  Modification of spontaneous and evoked otoacoustic emissions and associated psychoacoustic microstructure by aspirin consumption. , 1988, The Journal of the Acoustical Society of America.

[135]  B. Lonsbury-Martin,et al.  Incidence of spontaneous otoacoustic emissions in macaque monkeys: A replication , 1988, Hearing Research.

[136]  G. K. Martin,et al.  Spontaneous otoacoustic emissions in a nonhuman primate. I. Basic features and relations to other emissions , 1988, Hearing Research.

[137]  S J Norton,et al.  Tone-burst-evoked otoacoustic emissions from normal-hearing subjects. , 1987, The Journal of the Acoustical Society of America.

[138]  D. T. Kemp,et al.  Otoacoustic emissions, travelling waves and cochlear mechanisms , 1986, Hearing Research.

[139]  D. T. Kemp,et al.  Intermodulation distortion in the cochlea: could basal vibration be the major cause of round window CM distortion? , 1985, Hearing Research.

[140]  M. Vater,et al.  Evoked acoustic emissions and cochlear microphonics in the mustache bat, Pteronotus parnellii , 1985, Hearing Research.

[141]  R. Fettiplace,et al.  The mechanical properties of ciliary bundles of turtle cochlear hair cells. , 1985, The Journal of physiology.

[142]  William Bialek,et al.  QUANTUM LIMITS TO OSCILLATOR STABILITY - THEORY AND EXPERIMENTS ON ACOUSTIC EMISSIONS FROM THE HUMAN EAR , 1984 .

[143]  E Zwicker,et al.  Interrelation of different oto-acoustic emissions. , 1984, The Journal of the Acoustical Society of America.

[144]  M. Ruggero,et al.  Spontaneous otoacoustic emissions in a dog , 1984, Hearing Research.

[145]  David T. Kemp,et al.  Suppressibility of the 2 f 1- f 2 stimulated acoustic emissions in gerbil and man , 1984, Hearing Research.

[146]  David T. Kemp,et al.  Ear canal acoustic and round window electrical correlates of 2f 1- f 2 distortion generated in the cochlea , 1984, Hearing Research.

[147]  D. Mountain,et al.  Alternating current delivered into the scala media alters sound pressure at the eardrum. , 1983, Science.

[148]  W. W. Clark,et al.  The behavior of acoustic distortion products in the ear canals of chinchillas with normal or damaged ears. , 1982, The Journal of the Acoustical Society of America.

[149]  T. F. Weiss,et al.  Bidirectional transduction in vertebrate hair cells: A mechanism for coupling mechanical and electrical processes , 1982, Hearing Research.

[150]  B. M. Johnstone,et al.  Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. , 1982, The Journal of the Acoustical Society of America.

[151]  D. O. Kim,et al.  Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity , 1982, Hearing Research.

[152]  G. Long The microstructure of quiet and masked thresholds , 1980, Hearing Research.

[153]  D. Mountain,et al.  Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. , 1980, Science.

[154]  W. L. C. Rutten,et al.  Evoked acoustic emissions from within normal and abnormal human ears: Comparison with audiometric and electrocochleographic findings , 1980, Hearing Research.

[155]  S. D. Anderson Some ECMR properties in relation to other signals from the auditory periphery , 1980, Hearing Research.

[156]  J. P. Wilson,et al.  Evidence for a cochlear origin for acoustic re-emissions, threshold fine-structure and tonal tinnitus , 1980, Hearing Research.

[157]  J. P. Wilson,et al.  Model for cochlear echoes and tinnitus based on an observed electrical correlate , 1980, Hearing Research.

[158]  E. De Boer,et al.  Nonlinear interactions and the ‘Kemp echo’ , 1980, Hearing Research.

[159]  D. O. Kim Cochlear mechanics: Implications of electrophysiological and acoustical observations , 1980, Hearing Research.

[160]  R. J. Ritsma,et al.  Evoked acoustical responses from the human ear: Some experimental results , 1980, Hearing Research.

[161]  D. T. Kemp,et al.  Towards a model for the origin of cochlear echoes , 1980, Hearing Research.

[162]  D. T. Kemp,et al.  Properties of the generator of stimulated acoustic emissions , 1980, Hearing Research.

[163]  D O Kim,et al.  Cochlear mechanics: nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and in ear-canal sound pressure. , 1980, The Journal of the Acoustical Society of America.

[164]  E. Zwicker,et al.  A model describing nonlinearities in hearing by active processes with saturation at 40 dB , 1979, Biological Cybernetics.

[165]  R. J. Ritsma,et al.  Stimulated acoustic emissions from the human ear , 1979 .

[166]  D. Kemp,et al.  The evoked cochlear mechanical response in laboratory primates , 1979, Archives of oto-rhino-laryngology.

[167]  D. Kemp Stimulated acoustic emissions from within the human auditory system. , 1978, The Journal of the Acoustical Society of America.

[168]  W. S. Rhode,et al.  Some observations on cochlear mechanics. , 1978, The Journal of the Acoustical Society of America.

[169]  P. Sellick,et al.  Tuning properties of cochlear hair cells , 1977, Nature.

[170]  C D Geisler,et al.  Transient response of the basilar membrane measured in squirrel monkeys using the Mössbauer effect. , 1976, The Journal of the Acoustical Society of America.

[171]  D. O. Kim,et al.  Cochlear nerve fiber responses: distribution along the cochlear partition. , 1975, The Journal of the Acoustical Society of America.

[172]  P. Dallos,et al.  Effect of absence of cochlear outer hair cells on behavioural auditory threshold , 1975, Nature.

[173]  W. S. Rhode,et al.  Evidence from Mössbauer experiments for nonlinear vibration in the cochlea. , 1974, The Journal of the Acoustical Society of America.

[174]  Guido F. Smoorenburg,et al.  Combination Tones and Their Origin , 1972 .

[175]  W. S. Rhode Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. , 1971, The Journal of the Acoustical Society of America.

[176]  T J Goblick,et al.  Time-domain measurements of cochlear nonlinearities using combination click stimuli. , 1969, The Journal of the Acoustical Society of America.

[177]  Peter Dallos,et al.  On the Generation of Odd-Fractional Subharmonics , 1966 .

[178]  P. Dallos,et al.  Subharmonic components in cochlear-microphonoic potentials. , 1966, The Journal of the Acoustical Society of America.

[179]  Jozef J. Zwislocki,et al.  Analysis of the Middle‐Ear Function. Part I: Input Impedance , 1962 .

[180]  Thomas Gold,et al.  Hearing. II. The Physical Basis of the Action of the Cochlea , 1948, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[181]  D. T. Kemp,et al.  Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea , 2004, Archives of oto-rhino-laryngology.

[182]  I. Russell,et al.  Role of the tectorial membrane revealed by otoacoustic emissions recorded from wild-type and transgenic Tecta(deltaENT/deltaENT) mice. , 2004, Journal of neurophysiology.

[183]  H. Wit Amplitude fluctuations of spontaneous otoacoustic emissions caused by internal and externally applied noise sources. , 1993, Progress in brain research.

[184]  P Bray,et al.  An advanced cochlear echo technique suitable for infant screening. , 1987, British journal of audiology.

[185]  D. Kemp,et al.  Wideband Analysis of Otoacoustic Intermodulation , 1986 .