Compact low-power implementation for continuous-time ΣΔ modulators

This paper presents a low-area continuous time (CT) sigma-delta (@S@D) modulator implementation based on a local feedback. The proposed structure provides a very low impedance node without the need of classical op-amps, which leads to a reduction in power and area consumption. Two versions of a conventional first-order CT @S@D modulator prototype have been fabricated with the purpose of evaluating the idea. The modulator requirements have been set for a passive RFID tag with sensing capability application, so that achieving minimum active area and very low power consumption are the main objectives for the presented design. Experimental results of the first version of the modulator show 8 bits of Effective-Number-Of-Bits (ENOB) in a 25kHz signal bandwidth with 7@mW of power consumption. The proposed implementation has also shown to be very robust against supply voltage and bias current variations. A second approach has also been designed, using the same principle of operation, in order to increase the input voltage range without any power consumption penalty at the expense of decreasing the input impedance and stingily increased area. This second approach shows 9 bits of ENOB in the same signal bandwidth with a power consumption of 4.35@mW. A Figure Of Merit (FOM) of 0.267pJ/state has been achieved with a total area consumption (without pads) of 110@mmx125@mm in a 0.35@mm CMOS technology.

[1]  Rahul Sarpeshkar,et al.  A Bio-Inspired Ultra-Energy-Efficient Analog-to-Digital Converter for Biomedical Applications , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  D. Joseph,et al.  Pixel-level delta-sigma ADC with optimized area and power for vertically-integrated image sensors , 2008, 2008 51st Midwest Symposium on Circuits and Systems.

[3]  U. Wismar,et al.  A 0.2V 0.44 /spl mu W 20 kHz Analog to Digital /spl Sigma/Δ Modulator with 57 fJ/conversion FoM , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[4]  Yi-Gyeong Kim,et al.  A 0.9-V 60-$\mu{\hbox {W}}$ 1-Bit Fourth-Order Delta-Sigma Modulator With 83-dB Dynamic Range , 2008, IEEE Journal of Solid-State Circuits.

[5]  Ramón González Carvajal,et al.  The flipped voltage follower: a useful cell for low-voltage low-power circuit design , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Gunhee Han,et al.  A 0.7V 36μW 85dB-DR Audio ΔΣ Modulator Using Class-C Inverter , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[7]  M. Steyaert,et al.  A 1 V 88 dB 20 kHz /spl Sigma//spl Delta/ modulator in 90 nm CMOS , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[8]  Franz Kuttner,et al.  A Continuous Time ΔΣ ADC for Voice Coding with 92dB DR in 45nm CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[9]  Xiaoyan Wang,et al.  A 30fJ/conversion-step 8b 0-to-10MS/s asynchronous SAR ADC in 90nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[10]  Pietro Andreani,et al.  A 0.2V 0.44uW 20KHz Analog to Digital Sigma Delta Modulator with 57fJ/conversion FoM , 2006 .

[11]  R. Berenguer,et al.  Long range, low power UHF RFID analog front-end suitable for batteryless wireless sensors , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[12]  Chien-Hung Kuo,et al.  A Low-Voltage Fourth-Order Cascade Delta–Sigma Modulator in 0.18-$\mu\hbox{m}$ CMOS , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  Shanthi Pavan,et al.  A Power Optimized Continuous-Time $\Delta \Sigma $ ADC for Audio Applications , 2008, IEEE Journal of Solid-State Circuits.

[14]  Boris Murmann,et al.  A/D converter trends: Power dissipation, scaling and digitally assisted architectures , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[15]  Kari Halonen,et al.  CMOS dynamic comparators for pipeline A/D converters , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[16]  G.C. Temes,et al.  A 0.9V 92dB Double-Sampled Switched-RC SD Audio ADC , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[17]  J. Goes,et al.  A 0.9V /spl Delta//spl Sigma/ Modulator with 80dB SNDR and 83dB DR Using a Single-Phase Technique , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[18]  E. J. V. D. Zwan A 2.3 mW CMOS /spl Sigma//spl Delta/ modulator for audio applications , 1997 .

[19]  Kong-Pang Pun,et al.  A 0.5-V 74-dB SNDR 25-kHz Continuous-Time Delta-Sigma Modulator With a Return-to-Open DAC , 2007, IEEE Journal of Solid-State Circuits.

[20]  Naveen Verma,et al.  12.5 A 25µW 100kS/s 12b ADC for Wireless Micro-Sensor Applications , 2006 .

[21]  A.P. Chandrakasan,et al.  A 25/spl mu/W 100kS/s 12b ADC for wireless micro-sensor applications , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[22]  K. Halonen,et al.  A 12-Bit 32 /spl mu/W Ratio-Independent Algorithmic ADC , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[23]  Michiel Steyaert,et al.  4.5 A 1V 88dB 20kHz Σ∆ Modulator in 90nm CMOS , 2004 .

[24]  Chung-Ming Huang,et al.  A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[25]  P. Kinget,et al.  A 0.5V 74dB SNDR 25kHz CT /spl Delta//spl Sigma/ Modulator with Return-to-Open DAC , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.