Nonlinear Theory for Coalescing Characteristics in Multiphase Whitham Modulation Theory

The multiphase Whitham modulation equations with $N$ phases have $2N$ characteristics which may be of hyperbolic or elliptic type. In this paper a nonlinear theory is developed for coalescence, where two characteristics change from hyperbolic to elliptic via collision. Firstly, a linear theory develops the structure of colliding characteristics involving the topological sign of characteristics and multiple Jordan chains, and secondly a nonlinear modulation theory is developed for transitions. The nonlinear theory shows that coalescing characteristics morph the Whitham equations into an asymptotically valid geometric form of the two-way Boussinesq equation. That is, coalescing characteristics generate dispersion, nonlinearity and complex wave fields. For illustration, the theory is applied to coalescing characteristics associated with the modulation of two-phase travelling-wave solutions of coupled nonlinear Schrodinger equations, highlighting how collisions can be identified and the relevant dispersive dynamics constructed.

[1]  Chun-Hua Guo,et al.  Algorithms for hyperbolic quadratic eigenvalue problems , 2005, Math. Comput..

[2]  James Howard,et al.  Stability of Hamiltonian equilibria , 2013, Scholarpedia.

[3]  Nonlinear multiphase deep‐water wavetrains , 1976 .

[4]  T. Bridges,et al.  Reduction to modified KdV and its KP-like generalization via phase modulation , 2018, Nonlinearity.

[5]  M. Hoefer,et al.  Modulations of viscous fluid conduit periodic waves , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[7]  David W. McLaughlin,et al.  Multiphase averaging and the inverse spectral solution of the Korteweg—de Vries equation , 1980 .

[8]  V. Mehrmann,et al.  On the sign characteristics of Hermitian matrix polynomials , 2016 .

[9]  Phase dynamics of periodic wavetrains leading to the 5th order KP equation , 2017 .

[10]  D. Ratliff Double Degeneracy in Multiphase Modulation and the Emergence of the Boussinesq Equation , 2018 .

[11]  T. Bridges,et al.  Multisymplectic structures and the variational bicomplex , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[13]  Thomas J. Bridges,et al.  On the Elliptic-Hyperbolic Transition in Whitham Modulation Theory , 2017, SIAM J. Appl. Math..

[14]  D. J. Benney,et al.  The Evolution of Multi-Phase Modes for Nonlinear Dispersive Waves , 1970 .

[15]  M. Ablowitz,et al.  Interacting nonlinear wave envelopes and rogue wave formation in deep water , 2014, 1407.5077.

[16]  T. Bridges A universal form for the emergence of the Korteweg–de Vries equation , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  A. Degasperis,et al.  Rogue Wave Type Solutions and Spectra of Coupled Nonlinear Schrödinger Equations , 2019, Fluids.

[18]  Jan Cornelis van der Meer,et al.  The Hamiltonian Hopf Bifurcation , 1985 .

[19]  J. Willebrand,et al.  Energy transport in a nonlinear and inhomogeneous random gravity wave field , 1975, Journal of Fluid Mechanics.

[20]  M. Lighthill Some special cases treated by the Whitham theory , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  Leiba Rodman,et al.  Spectral analysis of selfadjoint matrix polynomials , 1980 .

[22]  T. Bridges,et al.  Multiphase wavetrains, singular wave interactions and the emergence of the Korteweg–de Vries equation , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  John Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[24]  T. Bridges,et al.  Nonlinear modulation near the Lighthill instability threshold in 2+1 Whitham theory , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  T. Bridges,et al.  The Symplectic Evans Matrix,¶and the Instability of Solitary Waves and Fronts , 2001 .

[26]  Turitsyn Blow-up in the Boussinesq equation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  P. Kevrekidis,et al.  Solitons in coupled nonlinear Schrödinger models: A survey of recent developments , 2016 .

[28]  N. Berloff,et al.  Condensation of classical nonlinear waves in a two-component system , 2008, 0803.0884.

[29]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[30]  T. Bridges,et al.  Krein signature and Whitham modulation theory: the sign of characteristics and the “sign characteristic” , 2019, Studies in Applied Mathematics.

[31]  D. Ratliff On the reduction of coupled NLS equations to non-linear phase equations via modulation of a two-phase wavetrain , 2017 .

[32]  M. A. Hoefer,et al.  Shock Waves in Dispersive Hydrodynamics with Nonconvex Dispersion , 2016, SIAM J. Appl. Math..

[33]  G. Whitham A general approach to linear and non-linear dispersive waves using a Lagrangian , 1965, Journal of Fluid Mechanics.

[34]  G. B. Whitham,et al.  Non-linear dispersion of water waves , 1967, Journal of Fluid Mechanics.

[35]  T. Bridges,et al.  A proof of validity for multiphase Whitham modulation theory , 2020, Proceedings of the Royal Society A.

[36]  D. Ratliff,et al.  Dispersive dynamics in the characteristic moving frame , 2018, Proceedings of the Royal Society A.

[37]  J. Williamson On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .

[38]  Hans Volkmer,et al.  Eigencurves for Two-Parameter Sturm-Liouville Equations , 1996, SIAM Rev..