Mechanical gas capture and release in a network solid via multiple single-crystalline transformations.

[1]  C. Serre,et al.  Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks , 2007, Science.

[2]  J. Warren,et al.  Reversible Concerted Ligand Substitution at Alternating Metal Sites in an Extended Solid , 2007, Science.

[3]  S. Kitagawa,et al.  A flexible interpenetrating coordination framework with a bimodal porous functionality. , 2007, Nature materials.

[4]  L. Barbour Single Crystal to Single Crystal Transformations , 2006 .

[5]  Young Eun Cheon,et al.  Recent advances in the dynamics of single crystal to single crystal transformations in metal-organic open frameworks , 2006 .

[6]  G. Shimizu,et al.  Microporous metal-organic frameworks formed in a stepwise manner from luminescent building blocks. , 2006, Journal of the American Chemical Society.

[7]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[8]  J. Long,et al.  Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: syntheses, structures, and hydrogen storage properties. , 2006, Journal of the American Chemical Society.

[9]  M. Garcia‐Garibay,et al.  Crystalline molecular machines: a quest toward solid-state dynamics and function. , 2006, Accounts of chemical research.

[10]  J. Ripmeester,et al.  Guest exchange in single crystals of van der Waals nanocapsules. , 2006, Angewandte Chemie.

[11]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[12]  C. Su,et al.  [Co2(ppca)2(H2O)(V4O12)0.5]: a framework material exhibiting reversible shrinkage and expansion through a single-crystal-to-single-crystal transformation involving a change in the cobalt coordination environment. , 2005, Angewandte Chemie.

[13]  Xiao-Ming Chen,et al.  Temperature- or guest-induced drastic single-crystal-to-single-crystal transformations of a nanoporous coordination polymer. , 2005, Journal of the American Chemical Society.

[14]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[15]  S. Kitagawa,et al.  Flexible microporous coordination polymers , 2005 .

[16]  G. Shimizu Assembly of Metal Ions and Ligands with Adaptable Coordinative Tendencies as a Route to Functional Metal-Organic Solids , 2005 .

[17]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[18]  Y. Kawazoe,et al.  Highly controlled acetylene accommodation in a metal–organic microporous material , 2005, Nature.

[19]  M. Fujita,et al.  In situ observation of a reversible single-crystal-to-single-crystal apical-ligand-exchange reaction in a hydrogen-bonded 2D coordination network. , 2005, Angewandte Chemie.

[20]  Wenbin Lin,et al.  Highly porous, homochiral metal-organic frameworks: solvent-exchange-induced single-crystal to single-crystal transformations. , 2005, Angewandte Chemie.

[21]  S. Kitagawa,et al.  Dynamic porous properties of coordination polymers inspired by hydrogen bonds. , 2005, Chemical Society reviews.

[22]  O. Ohmori,et al.  Crystal-to-crystal guest exchange of large organic molecules within a 3D coordination network. , 2004, Journal of the American Chemical Society.

[23]  M. P. Suh,et al.  Dynamic and redox active pillared bilayer open framework: single-crystal-to-single-crystal transformations upon guest removal, guest exchange, and framework oxidation. , 2004, Journal of the American Chemical Society.

[24]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[25]  Kimoon Kim,et al.  Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. , 2004, Angewandte Chemie.

[26]  A. V. Leontiev,et al.  Encapsulation of gases in the solid state. , 2004, Chemical communications.

[27]  S. Kawata,et al.  Metal-complex assemblies constructed from the flexible hinge-like ligand H2bhnq: structural versatility and dynamic behavior in the solid state. , 2004, Chemistry.

[28]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[29]  Kazuya Saito,et al.  A contrivance for a dynamic porous framework: cooperative guest adsorption based on square grids connected by amide-amide hydrogen bonds. , 2004, Journal of the American Chemical Society.

[30]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[31]  C. Ratcliffe,et al.  Sorption of Xenon, Methane, and Organic Solvents by a Flexible Microporous Polymer Catena-Bis(Dibenzoylmethanato)-(4,4‘-bipyridyl)nickel(II) , 2003 .

[32]  S. Takamizawa,et al.  Carbon dioxide inclusion phases of a transformable 1D coordination polymer host [Rh2(O2CPh)4(pyz)]n. , 2003, Angewandte Chemie.

[33]  G. Enright,et al.  Thermally programmable gas storage and release in single crystals of an organic van der Waals host. , 2003, Journal of the American Chemical Society.

[34]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[35]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[36]  Kristie M. Adams,et al.  Porous lanthanide-organic frameworks: synthesis, characterization, and unprecedented gas adsorption properties. , 2003, Journal of the American Chemical Society.

[37]  G. J. Halder,et al.  Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material , 2002, Science.

[38]  J. Atwood,et al.  Guest Transport in a Nonporous Organic Solid via Dynamic van der Waals Cooperativity , 2002, Science.

[39]  M. P. Suh,et al.  A metal-organic bilayer open framework with a dynamic component: single-crystal-to-single-crystal transformations. , 2002, Journal of the American Chemical Society.

[40]  Cameron J Kepert,et al.  Flexible sorption and transformation behavior in a microporous metal-organic framework. , 2002, Journal of the American Chemical Society.

[41]  L. Nazar,et al.  A Reversible Solid-State Crystalline Transformation in a Metal Phosphide Induced by Redox Chemistry , 2002, Science.

[42]  J. Atwood,et al.  Storage of Methane and Freon by Interstitial van der Waals Confinement , 2002, Science.

[43]  K. Seki Dynamic channels of a porous coordination polymer responding to external stimuli , 2002 .

[44]  G. Schneider,et al.  Temperature, pressure and density dependencies of the solubilities of low-volatility organic compounds in compressed gases , 2002 .

[45]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[46]  G. Shimizu,et al.  Highly selective guest uptake in a silver sulfonate network imparted by a tetragonal to triclinic shift in the solid state. , 2001, Chemistry.

[47]  C. Ratcliffe,et al.  Chemical shift imaging with continuously flowing hyperpolarized xenon for the characterization of materials. , 2000, Journal of magnetic resonance.

[48]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[49]  J. Ripmeester,et al.  Transforming the Dense Polymorph into a Versatile New Microporous Framework , 1999 .

[50]  Bastiaan Driehuys,et al.  High‐volume production of laser‐polarized 129Xe , 1996 .

[51]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.