Online Matching and Ad Allocation

Matching is a classic problem with a rich history and a significant impact, both on the theory of algorithms and in practice. Recently there has been a surge of interest in the online version of matching and its generalizations, due to the important new application domain of Internet advertising. The theory of online matching and allocation has played a critical role in designing algorithms for ad allocation. This monograph surveys the key problems, models and algorithms from online matchings, as well as their implication in the practice of ad allocation. The goal is to provide a classification of the problems in this area, an introduction into the techniques used, a glimpse into the practical impact, and to provide direction in terms of open questions. Matching continues to find core applications in diverse domains, and the advent of massive online and streaming data emphasizes the future applicability of the algorithms and techniques surveyed here.

[1]  A. Roth,et al.  Two-sided matching , 1990 .

[2]  Alvin E. Roth,et al.  Pairwise Kidney Exchange , 2004, J. Econ. Theory.

[3]  Uriel Feige,et al.  Approximation algorithms for allocation problems: Improving the factor of 1 - 1/e , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[4]  Gagan Goel,et al.  On the Approximability of Budgeted Allocations and Improved Lower Bounds for Submodular Welfare Maximization and GAP , 2010, SIAM J. Comput..

[5]  Amin Saberi,et al.  Allocating online advertisement space with unreliable estimates , 2007, EC '07.

[6]  Nikhil R. Devanur,et al.  Fast algorithms for finding matchings in lopsided bipartite graphs with applications to display ads , 2010, EC '10.

[7]  Claire Mathieu,et al.  Improved Approximation Algorithms for Budgeted Allocations , 2008, ICALP.

[8]  Yossi Azar,et al.  Throughput-competitive on-line routing , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[9]  Klaus Jansen,et al.  Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques , 2006, Lecture Notes in Computer Science.

[10]  Jan Vondrák,et al.  Online and stochastic variants of welfare maximization , 2012, ArXiv.

[11]  Éva Tardos,et al.  An approximation algorithm for the generalized assignment problem , 1993, Math. Program..

[12]  Prasad Tetali,et al.  Stochastic Matching with Commitment , 2012, ICALP.

[13]  Sanjeev Khanna,et al.  A Polynomial Time Approximation Scheme for the Multiple Knapsack Problem , 2005, SIAM J. Comput..

[14]  Aravind Srinivasan,et al.  Budgeted Allocations in the Full-Information Setting , 2008, APPROX-RANDOM.

[15]  Aranyak Mehta,et al.  Online Matching with Stochastic Rewards , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[16]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.

[17]  Uriel G. Rothblum,et al.  Two-sided matching: A study in game-theoretic modeling and analysis: By Alvin E. Roth and Marilda A. Oliveira Sotomayor, Econometric Society Monographs, Cambridge Univ. Press, Cambridge, MA, 1990. 265 + xiii pp., $54.50 (hardback) , 1992 .

[18]  Yossi Azar,et al.  On Revenue Maximization in Second-Price Ad Auctions , 2009, ESA.

[19]  Daniel Lehmann,et al.  Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.

[20]  Aranyak Mehta,et al.  Online budgeted matching in random input models with applications to Adwords , 2008, SODA '08.

[21]  M. Utku Ünver,et al.  Efficient Kidney Exchange: Coincidence of Wants in a Markets with Compatibility-Based Preferences , 2009 .

[22]  Marek Adamczyk,et al.  Improved analysis of the greedy algorithm for stochastic matching , 2011, Inf. Process. Lett..

[23]  Nikhil R. Devanur,et al.  Online matching with concave returns , 2012, STOC '12.

[24]  David Lindley,et al.  Dynamic Programming and Decision Theory , 1961 .

[25]  Amin Saberi,et al.  Online stochastic matching: online actions based on offline statistics , 2010, SODA '11.

[26]  S. Muthukrishnan,et al.  Ad Exchanges: Research Issues , 2009, WINE.

[27]  Evangelos Markakis,et al.  Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP , 2002, JACM.

[28]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[29]  Joseph Naor,et al.  Frequency Capping in Online Advertising , 2011, WADS.

[30]  C. Greg Plaxton,et al.  Competitive Weighted Matching in Transversal Matroids , 2008, ICALP.

[31]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[32]  Vijay V. Vazirani,et al.  A theory of alternating paths and blossoms for proving correctness of the $$O(\sqrt V E)$$ general graph maximum matching algorithm , 1990, Comb..

[33]  Yossi Azar,et al.  Maximizing Throughput in Multi-queue Switches , 2004, ESA.

[34]  Alvin E. Roth,et al.  Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis , 1990 .

[35]  Mohammad Mahdian,et al.  Online bipartite matching with random arrivals: an approach based on strongly factor-revealing LPs , 2011, STOC '11.

[36]  Atri Rudra,et al.  Approximating Matches Made in Heaven , 2009, ICALP.

[37]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[38]  E. A. Dinic Algorithm for solution of a problem of maximal flow in a network with power estimation , 1970 .

[39]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[40]  Aranyak Mehta,et al.  Online Stochastic Matching: Beating 1-1/e , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[41]  Joseph Naor,et al.  The Design of Competitive Online Algorithms via a Primal-Dual Approach , 2009, Found. Trends Theor. Comput. Sci..

[42]  Richard M. Karp,et al.  An optimal algorithm for on-line bipartite matching , 1990, STOC '90.

[43]  Morteza Zadimoghaddam,et al.  Online Stochastic Weighted Matching: Improved Approximation Algorithms , 2011, WINE.

[44]  Nikhil R. Devanur,et al.  Budget smoothing for internet ad auctions: a game theoretic approach , 2013, EC '13.

[45]  A. Roth The Evolution of the Labor Market for Medical Interns and Residents: A Case Study in Game Theory , 1984, Journal of Political Economy.

[46]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[47]  Nikhil R. Devanur,et al.  Asymptotically optimal algorithm for stochastic adwords , 2012, EC '12.

[48]  V. Mirrokni,et al.  Tight approximation algorithms for maximum general assignment problems , 2006, SODA 2006.

[49]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[50]  Jon Feldman,et al.  Online Ad Assignment with Free Disposal , 2009, WINE.

[51]  Thomas P. Hayes,et al.  The adwords problem: online keyword matching with budgeted bidders under random permutations , 2009, EC '09.

[52]  Patrick Jaillet,et al.  Online Stochastic Matching: New Algorithms with Better Bounds , 2014, Math. Oper. Res..

[53]  Sudipto Guha,et al.  Selective Call Out and Real Time Bidding , 2010, WINE.

[54]  Chien-Ju Ho,et al.  Online Task Assignment in Crowdsourcing Markets , 2012, AAAI.

[55]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[56]  Jon M. Kleinberg,et al.  An improved approximation ratio for the minimum latency problem , 1996, SODA '96.

[57]  Vijay Kumar,et al.  Approximation Algorithms for Budget-Constrained Auctions , 2001, RANDOM-APPROX.

[58]  Yishay Mansour,et al.  Auctions with Budget Constraints , 2004, SWAT.

[59]  Nick McKeown,et al.  A Starvation-free Algorithm For Achieving 100% Throughput in an Input- Queued Switch , 1999 .

[60]  C Berge,et al.  TWO THEOREMS IN GRAPH THEORY. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Aranyak Mehta,et al.  Biobjective Online Bipartite Matching , 2014, WINE.

[62]  Mikhail Kapralov,et al.  Improved Bounds for Online Stochastic Matching , 2010, ESA.

[63]  Gagan Goel,et al.  Adwords Auctions with Decreasing Valuation Bids , 2007, WINE.

[64]  L. S. Shapley,et al.  College Admissions and the Stability of Marriage , 2013, Am. Math. Mon..

[65]  Atri Rudra,et al.  When LP Is the Cure for Your Matching Woes: Improved Bounds for Stochastic Matchings , 2010, Algorithmica.

[66]  Nikhil R. Devanur Online algorithms with stochastic input , 2011, SECO.

[67]  Aranyak Mehta,et al.  Inapproximability Results for Combinatorial Auctions with Submodular Utility Functions , 2005, Algorithmica.

[68]  Parag A. Pathak,et al.  The New York City High School Match , 2005 .

[69]  Martin E. Dyer,et al.  Randomized Greedy Matching II , 1995, Random Struct. Algorithms.

[70]  Morteza Zadimoghaddam,et al.  Simultaneous approximations for adversarial and stochastic online budgeted allocation , 2012, SODA.

[71]  Morteza Zadimoghaddam,et al.  Bicriteria Online Matching: Maximizing Weight and Cardinality , 2013, WINE.

[72]  Berthold Vöcking,et al.  An Optimal Online Algorithm for Weighted Bipartite Matching and Extensions to Combinatorial Auctions , 2013, ESA.

[73]  Nikhil R. Devanur,et al.  Near optimal online algorithms and fast approximation algorithms for resource allocation problems , 2011, EC '11.

[74]  Sanjeev Arora,et al.  The Multiplicative Weights Update Method: a Meta-Algorithm and Applications , 2012, Theory Comput..

[75]  Martin E. Dyer,et al.  Randomized Greedy Matching , 1991, Random Struct. Algorithms.

[76]  Vahab S. Mirrokni,et al.  Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions , 2008, EC '08.

[77]  Dan Pei,et al.  AdCell: Ad Allocation in Cellular Networks , 2011, ESA.

[78]  Nikhil R. Devanur,et al.  Randomized Primal-Dual analysis of RANKING for Online BiPartite Matching , 2013, SODA.

[79]  Gagan Goel,et al.  Online Vertex-Weighted Bipartite Matching and Single-bid Budgeted Allocations , 2010, SODA.

[80]  Sergei Vassilvitskii,et al.  Optimal online assignment with forecasts , 2010, EC '10.

[81]  John Tomlin,et al.  Optimal delivery of sponsored search advertisements subject to budget constraints , 2007, EC '07.

[82]  Nikhil R. Devanur,et al.  Real-time bidding algorithms for performance-based display ad allocation , 2011, KDD.

[83]  Aranyak Mehta,et al.  Online bipartite matching with unknown distributions , 2011, STOC '11.

[84]  Bala Kalyanasundaram,et al.  An Optimal Deterministic Algorithm for Online b-Matching , 1996, FSTTCS.

[85]  Aranyak Mehta,et al.  AdWords and Generalized On-line Matching , 2005, FOCS.

[86]  Rajeev Motwani,et al.  Fractional Matching Via Balls-and-Bins , 2006, APPROX-RANDOM.

[87]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[88]  Claire Mathieu,et al.  On-line bipartite matching made simple , 2008, SIGA.

[89]  Zizhuo Wang,et al.  A Dynamic Near-Optimal Algorithm for Online Linear Programming , 2009, Oper. Res..

[90]  Joseph Naor,et al.  Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue , 2007, ESA.

[91]  Eli Upfal,et al.  Constructing a perfect matching is in random NC , 1985, STOC '85.

[92]  Aranyak Mehta,et al.  Optimizing budget constrained spend in search advertising , 2013, WSDM '13.

[93]  Martin Pál,et al.  Algorithms for Secretary Problems on Graphs and Hypergraphs , 2008, ICALP.

[94]  Jon Feldman,et al.  Online Stochastic Packing Applied to Display Ad Allocation , 2010, ESA.