The perfect crystal, thermal vacancies and the thermal expansion coefficient of aluminium

Abstract The thermal expansion coefficient of an Al perfect crystal is predicted by our α VKTV model. Thermal defect contributions and their formation parameters are determined by subtracting model results from various macroscopic expansion coefficient measurements. The results are compared with extensive theoretical and experimental determinations of the vacancy formation parameters for Al. The formation parameters obtained here are 0.67eV for the enthalpy and 2.66k for the entropy. The vacancy concentration estimated at the melting point is 3.4 × 10−3. Our approach provides a basis for the calculation of the hightemperature—pressure properties of Al and serves as a guide for other defect-free theoretical calculations. The method can be extended to other fcc crystals.

[1]  Y. Kraftmakher EQUILIBRIUM VACANCIES AND THERMOPHYSICAL PROPERTIES OF METALS , 1998 .

[2]  S. Saxena,et al.  Thermal Expansion of Periclase (MgO) and Tungsten (W) to Melting Temperatures , 1997 .

[3]  Davenport,et al.  Vacancies and impurities in aluminum and magnesium. , 1995, Physical review. B, Condensed matter.

[4]  R. Reeber,et al.  Thermal defects and thermal expansion of ionic crystals at high temperatures , 1994 .

[5]  T. Hehenkamp Absolute vacancy concentrations in noble metals and some of their alloys , 1994 .

[6]  Yang,et al.  Formation energy and lattice relaxation for point defects in Li and Al. , 1992, Physical review. B, Condensed matter.

[7]  R. Mclellan,et al.  High-temperature elastic constants of gold single-crystals , 1991 .

[8]  M. J. Gillan,et al.  The ab initio calculation of defect energetics in aluminium , 1991 .

[9]  M. Finnis,et al.  The Harris functional applied to surface and vacancy formation energies in aluminium , 1990 .

[10]  B. M. Klein,et al.  Pseudo-atom calculation of energetics in metals , 1989 .

[11]  Yoichi Takahashi,et al.  Heat capacity of aluminum from 80 to 880 K , 1989 .

[12]  R. Wedell,et al.  Monovacancy Formation Energies in Cubic Crystals , 1989 .

[13]  M. Gillan Calculation of the vacancy formation energy in aluminium , 1989 .

[14]  P. D. Desai Thermodynamic properties of aluminum , 1987 .

[15]  Ralph O. Simmons,et al.  Thermodynamics of Point Defects and Their Relation With Bulk Properties , 1985 .

[16]  D. A. Ditmars,et al.  Aluminum. I. Measurement of the relative enthalpy from 273 to 929 K and derivation of thermodynamic functions for Al(s) from 0 K to Its melting point , 1985 .

[17]  M J Fluss,et al.  Measurements of the vacancy formation enthalpy in aluminum using positron annihilation spectroscopy , 1978 .

[18]  F. R. Kroeger,et al.  Absolute linear thermal‐expansion measurements on copper and aluminum from 5 to 320 K , 1977 .

[19]  G. Revel,et al.  The Formation Energy of Vacancies in Aluminium and Magnesium , 1976 .

[20]  W. Kramer,et al.  Anomale spezifische Wärmen und fehlordnung der Metalle indium, Zinn, Blei, Zink, Antimon und Aluminium , 1972 .

[21]  Y. Kraftmakher,et al.  Equilibrium Vacancies and Electrical Conductivity of Aluminium , 1972 .

[22]  P. D. Pathak,et al.  Thermal expansion and the law of corresponding states , 1970 .

[23]  R. Emrick,et al.  Effect of Pressure on Quenched-In Electrical Resistance in Gold and Aluminum , 1969 .

[24]  D. Gerlich,et al.  The high temperature elastic moduli of aluminum , 1969 .

[25]  J. Bass The formation and motion energies of vacancies in aluminium , 1967 .

[26]  D. King,et al.  Technique for Measuring Vacancy Concentrations in Metals at the Melting Point , 1966 .

[27]  G. Guarini,et al.  Vacancy contribution to the heat content in aluminium , 1966 .

[28]  J. Enderby,et al.  THE PAULI SUSCEPTIBILITY OF LIQUID AND SOLID LITHIUM , 1964 .

[29]  K. Salama,et al.  Elastic Constants of Aluminum , 1964 .

[30]  G. A. Alers,et al.  Low‐Temperature Elastic Moduli of Aluminum , 1964 .

[31]  S. Nenno,et al.  Detection and Determination of Equilibrium Vacancy Concentrations in Aluminum , 1960 .

[32]  R. Feder,et al.  Use of Thermal Expansion Measurements to Detect Lattice Vacancies near the Melting Point of Pure Lead and Aluminum , 1958 .

[33]  T. E Pochapsky,et al.  HEAT CAPACITY AND RESISTANCE MEASUREMENTS FOR ALUMINUM AND LEAD WIRES , 1953 .

[34]  Fdk. L. Uffelmann B.Sc. LXI. The expansion of metals at high temperatures , 1930 .

[35]  K. Scheel Über die Wärmeausdehnung einiger Stoffe. I , 1921 .

[36]  P. Varotsos,et al.  Chapter 8 - Thermodynamics of Point Defects , 2001 .

[37]  R. Mclellan,et al.  The elastic properties of aluminum at high temperatures , 1987 .

[38]  A. Wolfenden,et al.  Temperature dependence of the elastic constants of aluminum , 1979 .

[39]  B. Guérard,et al.  Equilibrium vacancy concentration measurements on aluminum , 1974 .

[40]  G. K. White,et al.  The thermal expansion of aluminum below 35 K , 1973 .

[41]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[42]  W. Waidelich,et al.  Equilibrium Vacancy Concentration in KCl , 1968 .

[43]  R. Simmons,et al.  Measurements of Equilibrium Vacancy Concentrations in Aluminum , 1960 .