Provenance of granitic gravestones in graveyard of feudal lords evaluated by multiple non-destructive rock analyses

[1]  Y. Jo,et al.  Ultrasonic Properties of a Stone Architectural Heritage and Weathering Evaluations Based on Provenance Site , 2022, Applied Sciences.

[2]  Ryota Watanabe,et al.  Non-destructive in-situ classification of sandstones used in the Angkor monuments of Cambodia using a portable X-ray fluorescence analyzer and magnetic susceptibility meter , 2021 .

[3]  S. Nishimoto Types of rocks in the stone walls of Nagoya Castle , 2020, Chishitsugaku zasshi.

[4]  B. Windley,et al.  The Ashizuri granite-alkaline gabbro complex in the forearc of a Paleogene accretionary complex, Shikoku, Japan: Constraints on evolution by zircon U-Pb age and trace element composition , 2020, GEOCHEMICAL JOURNAL.

[5]  S. Nakano,et al.  Combined influences of iron-oxides and micropores on reddish coloration of alkali feldspars in granitic rocks , 2019, The Journal of the Geological Society of Japan.

[6]  H. Tokuyama,et al.  Provenance of submerged stone pillars in an earthquake and typhoon hazard zone, coastal Tosashimizu, southwest Japan: A multidisciplinary geological approach , 2019, Marine Geology.

[7]  W. Tanikawa,et al.  Data Report for quantitative analysis of mineral composition using powdered X-ray diffraction method and RockJock program , 2018, JAMSTEC Report of Research and Development.

[8]  K. Fukamachi,et al.  Color analysis of Shirakawa-ishi used as landscaping material and similar granites , 2018 .

[9]  G. Casula,et al.  An innovative methodology for the non-destructive diagnosis of architectural elements of ancient historical buildings , 2018, Scientific Reports.

[10]  B. Ménendez,et al.  Non-Destructive Techniques Applied to Monumental Stone Conservation , 2016 .

[11]  Yoshidomi Ken'ichi Apparent Diversity of Igneous Rocks-Distribution of the granitic rocks and characteristic of lithologies- , 2016 .

[12]  T. Sakiyama Validity of magnetic susceptibility for identification of the producing area on the granitic fragments of historic stonework. , 2015 .

[13]  A. Cho Magnetic susceptibility of Tsukuba granite and stone sculptures in old Tsukuba town. , 2014 .

[14]  R. Fort,et al.  Non-destructive testing for the assessment of granite decay in heritage structures compared to quarry stone , 2013 .

[15]  S. Ishihara,et al.  Zircon and REE-rich alkaline plutonic rocks intruded into the accretionary prism at the Cape Ashizuri, Shikoku Island, Japan , 2013 .

[16]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[17]  J. Akai,et al.  Unusual internal textures and trace element chemistry of zircon from Cape Ashizuri Ring Complex, Kochi, SW Japan , 2011 .

[18]  Shunji Yokoyama,et al.  Field trip for the lamination sheeting of granites and Shodoshima stone in Shodoshima Island, Kagawa Prefecture , 2009 .

[19]  S. Ishihara,et al.  REE-bearing minerals of the Late Cretaceous ilmenite-series granites of the Inner Zone of Southwest Japan , 2007 .

[20]  K. Yasuhara,et al.  A PROPOSAL OF NEW COLOR MEASURING METHOD USING A DIGITAL CAMERA AND A COLOR EVALUATION INDEX FOR BUILDING STONES , 2006 .

[21]  K. Nishida,et al.  The Research of Remains of the quarry in Maejima at Ushimado-town, Okayama Prefecture , 1997 .

[22]  昌司 西本,et al.  画像処理ソフト“Adobe photoshopTM”を用いた花崗岩質岩石のモード測定 , 1996 .

[23]  Kozo Amano,et al.  A Study on Masonry Work Technology of Osaka Castle in Tokugawa Period , 1996 .

[24]  R. Thorpe,et al.  MAGNETIC SUSCEPTIBILITY USED IN NON‐DESTRUCTIVE PROVENANCING OF ROMAN GRANITE COLUMNS , 1993 .

[25]  H. Honma,et al.  Petrological study of granitic rocks from the Kashiwajima-Okinoshima district in the southwestern part of Kochi Prefecture , 1993 .

[26]  T. Imaoka,et al.  Rapakivi granites from Cape of Ashizuri, Kohchi Prefecture, Southwest Japan , 1985 .

[27]  S. Ishihara Lateral variation of magnetic susceptibility of the Japanese granitoids. , 1979 .

[28]  S. Ishihara The Magnetite-series and Ilmenite-series Granitic Rocks , 1977 .