WENO-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence

The recently developed Gas Kinetic Method (GKM) for computing fluid flow is enhanced with advanced reconstruction (interpolation) schemes to enable direct simulations of highly compressible transition and turbulence fields. Variants of Weighted Essentially Non-Oscillatory (WENO) reconstruction schemes of different orders of accuracy are implemented and examined along with more elementary van Leer method. The competing schemes are evaluated for their accuracy, efficiency and numerical stability. The computed results are compared against the Rapid Distortion Theory for the case of compressible shear turbulence and 'pressure-released' Burgers solution. In the case of decaying isotropic turbulence, the efficacy of the reconstruction schemes is evaluated by comparison against a 'gold standard' high-resolution simulation. The capabilities of the reconstruction schemes to capture linear, non-linear, pressure-released and viscous flow physics as well as solenoidal and dilatational features of the flow fields are established in isolation and combination. The most suitable WENO variant for integration with GKM is identified. Another important outcome of the study is the finding that temperature-interpolation is superior to energy-interpolation in avoiding negative temperatures arising due to the Gibbs phenomenon. Overall, this work advances the applicability of kinetic theory based GKM to a wider range of high Mach number flow physics.

[1]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[2]  Antony Jameson,et al.  GAS-KINETIC BGK METHOD FOR THREE-DIMENSIONAL COMPRESSIBLE FLOWS , 2002 .

[3]  Pramote Dechaumphai,et al.  High-speed compressible flow solutions by adaptive cell-centered upwinding algorithm with modified H -correction entropy fix , 2003 .

[4]  Zhihui Li,et al.  Study on gas kinetic unified algorithm for flows from rarefied transition to continuum , 2004 .

[5]  G. Tóth,et al.  Comparison of Some Flux Corrected Transport and Total Variation Diminishing Numerical Schemes for Hydrodynamic and Magnetohydrodynamic Problems , 1996 .

[6]  Johannes Kreuzinger,et al.  DNS of Homogeneous Shear Flow and Data Analysis for the Development of a Four-Equation Turbulence Model , 2003 .

[7]  H. Risken,et al.  Fokker-Planck Equation for One Variable; Methods of Solution , 1996 .

[8]  Ulrich Schumann,et al.  Algorithms for direct numerical simulation of shear-periodic turbulence , 1985 .

[9]  Kurn Chul Lee,et al.  Heat release effects on decaying homogeneous compressible turbulence , 2009 .

[10]  Mikhail Naumovich Kogan,et al.  Rarefied Gas Dynamics , 1969 .

[11]  Sawan Suman,et al.  Flow-thermodynamics interactions in rapidly-sheared compressible turbulence , 2012 .

[12]  Kun Xu,et al.  Microchannel flow in the slip regime: gas-kinetic BGK–Burnett solutions , 2004, Journal of Fluid Mechanics.

[13]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[14]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[15]  Sharath S. Girimaji,et al.  Boltzmann–BGK approach to simulating weakly compressible 3D turbulence: comparison between lattice Boltzmann and gas kinetic methods , 2007 .

[16]  Kun Xu,et al.  A Unified Gas-Kinetic Scheme for Continuum and Rarefied Flows II: Multi-Dimensional Cases , 2012 .

[17]  Richard Sanders,et al.  Regular ArticleMultidimensional Dissipation for Upwind Schemes: Stability and Applications to Gas Dynamics☆ , 1998 .

[18]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[19]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[20]  D. Pullin,et al.  Direct simulation methods for compressible inviscid ideal-gas flow , 1980 .

[21]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[22]  Sharath S. Girimaji,et al.  DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method , 2005 .

[23]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[24]  Matthaeus,et al.  Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[25]  Tucker Alan Lavin Reynolds and Favre-averaged rapid distortion theory for compressible, ideal-gas turbulence , 2007 .

[26]  Kun Xu,et al.  Gas-kinetic schemes for unsteady compressible flow simulations , 1998 .

[27]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[28]  Jean-Marc Moschetta,et al.  ON THE PATHOLOGICAL BEHAVIOR OF UPWIND SCHEMES , 1998 .

[29]  Waqar Asrar,et al.  Application of Gas-Kinetic BGK Scheme for Solving 2-D Compressible Inviscid Flow around Linear Turbine Cascade , 2006 .

[30]  G. Batchelor,et al.  THE EFFECT OF RAPID DISTORTION OF A FLUID IN TURBULENT MOTION , 1954 .

[31]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[32]  Kun Xu,et al.  Numerical Navier-Stokes solutions from gas kinetic theory , 1994 .

[33]  Kun Xu,et al.  The kinetic scheme for the full-Burnett equations , 2004 .

[34]  Kun Xu,et al.  Gas-kinetic scheme for rarefied flow simulation , 2006, Math. Comput. Simul..

[35]  Antony Jameson,et al.  An improved gas-kinetic BGK finite-volume method for three-dimensional transonic flow , 2007, J. Comput. Phys..

[36]  Ramesh K. Agarwal,et al.  Beyond Navier–Stokes: Burnett equations for flows in the continuum–transition regime , 2001 .

[37]  Li-Shi Luo,et al.  Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Kun Xu,et al.  Gas-Kinetic Theory-Based Flux Splitting Method for Ideal Magnetohydrodynamics , 1999 .

[39]  S. Osher,et al.  Regular ArticleUniformly High Order Accurate Essentially Non-oscillatory Schemes, III , 1997 .

[40]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[41]  J. Quirk A Contribution to the Great Riemann Solver Debate , 1994 .

[42]  Kun Xu,et al.  A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow , 2005 .

[43]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[44]  M. Pino Martín,et al.  Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence , 2007, J. Comput. Phys..

[45]  Song Fu,et al.  A high-order gas-kinetic Navier-Stokes flow solver , 2010, J. Comput. Phys..

[46]  Yan Peng,et al.  Comparison of the lattice Boltzmann and pseudo-spectral methods for decaying turbulence: Low-order statistics , 2010 .

[47]  Richard Sanders,et al.  Multidimensional Dissipation for Upwind Schemes , 1998 .

[48]  Song Fu,et al.  Application of gas-kinetic scheme with kinetic boundary conditions in hypersonic flow , 2005 .

[49]  Gordon Erlebacher,et al.  The analysis and modelling of dilatational terms in compressible turbulence , 1989, Journal of Fluid Mechanics.

[50]  V. Gregory Weirs,et al.  A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence , 2006, J. Comput. Phys..

[51]  Li-Shi Luo,et al.  Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Kun Xu,et al.  A gas-kinetic BGK scheme for the compressible Navier-Stokes equations , 2000 .

[53]  Hongwei Liu,et al.  A comparative study of the LBE and GKS methods for 2D near incompressible laminar flows , 2008, J. Comput. Phys..

[54]  Sergei K. Turitsyn,et al.  Lagrangian and Eulerian descriptions of inertial particles in random flows , 2007 .

[55]  Antony Jameson,et al.  Gas-kinetic finite volume methods, flux-vector splitting, and artificial diffusion , 1995 .

[56]  L. I. Sedov,et al.  Problems of hydrodynamics and continuum mechanics : contributions in honor of the sixtieth birthday of Academician L.I. Sedov, 14th November 1967 , 1969 .

[57]  Jishan Hu,et al.  Projection Dynamics in Godunov-Type Schemes , 1998 .

[58]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[59]  Ravi Samtaney,et al.  Direct numerical simulation of decaying compressible turbulence and shocklet statistics , 2001 .

[60]  Kun Xu,et al.  A Unified Gas-Kinetic Scheme for Continuum and Rarefied Flows III: Microflow Simulations , 2013 .

[61]  Jean-Marc Moschetta,et al.  Shock wave instability and the carbuncle phenomenon: same intrinsic origin? , 2000, Journal of Fluid Mechanics.

[62]  Oh-Hyun Rho,et al.  Development of an Improved Gas-Kinetic BGK Scheme for Inviscid and Viscous Flows , 2000 .

[63]  Kun Xu,et al.  A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method , 2001 .

[64]  Gregory A. Blaisdell,et al.  Rapid Distortion Theory for Compressible Homogeneous Turbulence Under Isotropic Mean Strain , 1996 .

[65]  T. Gerz,et al.  Direct numerical simulation of stratified homogeneous turbulent shear flows , 1989, Journal of Fluid Mechanics.

[66]  B. Z. Cybyk,et al.  Direct Simulation Monte Carlo: Recent Advances and Applications , 1998 .

[67]  Kun Xu,et al.  A unified gas kinetic scheme with moving mesh and velocity space adaptation , 2012, J. Comput. Phys..

[68]  Philippe Villedieu,et al.  High-Order Positivity-Preserving Kinetic Schemes for the Compressible Euler Equations , 1996 .

[69]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .

[70]  Mohamed Salah Ghidaoui,et al.  Low-Speed Flow Simulation by the Gas-Kinetic Scheme , 1999 .

[71]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[72]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[73]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .