Simulation of capillary flow with a dynamic contact angle

A number of theoretical and empirical dynamic contact angle (DCA) models have been tested in a numerical simulation of liquid reorientation in microgravity for which experimental validation data are available. It is observed that the DCA can have a large influence on liquid dynamics in microgravity. Correct modelling of the DCA is found to be essential for realistic numerical simulation, and hysteresis effects cannot be ignored.

[1]  S. V. Mourik,et al.  Numerical modelling of the dynamic contact angle , 2003 .

[2]  A. Veldman,et al.  Symmetry-preserving discretization of turbulent flow , 2003 .

[3]  E. B. Dussan,et al.  LIQUIDS ON SOLID SURFACES: STATIC AND DYNAMIC CONTACT LINES , 1979 .

[4]  Arthur Veldman,et al.  A Volume-of-Fluid based simulation method for wave impact problems , 2005 .

[5]  J. Berg,et al.  Dynamic wetting in the low capillary number regime , 1992 .

[6]  Arthur Veldman,et al.  Dynamics of liquid-filled spacecraft , 2003 .

[7]  Yulii D. Shikhmurzaev,et al.  The moving contact line on a smooth solid surface , 1993 .

[8]  J. C. Slattery,et al.  Correlation for dynamic contact angle , 1979 .

[9]  Nonlinear sloshing in zero gravity , 2002, Journal of Fluid Mechanics.

[10]  Tommy Nylander,et al.  Can a Dynamic Contact Angle be Understood in Terms of a Friction Coefficient , 2000 .

[11]  Junfeng Zhang,et al.  Lattice boltzmann study on the contact angle and contact line dynamics of liquid-vapor interfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[12]  M. Dreyer,et al.  TEST-CASE NO 31: REORIENTATION OF A FREE LIQUID INTERFACE IN A PARTLY FILLED RIGHT CIRCULAR CYLINDER UPON GRAVITY STEP REDUCTION (PE) , 2004 .

[13]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[14]  Y. Shikhmurzaev Moving contact lines in liquid/liquid/solid systems , 1997, Journal of Fluid Mechanics.

[15]  P. Joos,et al.  The kinetics of wetting: the dynamic contact angle , 1989 .

[16]  Hui Fan,et al.  Thermodynamics modeling for moving contact line in gas/liquid/solid system: Capillary rise problem revisited , 2001 .

[17]  H. Rath,et al.  Damped Oscillations of a Liquid/Gas Surface upon Step Reduction in Gravity , 1997 .