Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities

We present some deterministic schemes to construct universal quantum gates, that is, controlled- NOT, three-qubit Toffoli, and Fredkin gates, between flying photon qubits and stationary electron-spin qubits assisted by quantum dots inside double-sided optical microcavities. The control qubit of our gates is encoded on the polarization of the moving single photon and the target qubits are encoded on the confined electron spins in quantum dots inside optical microcavities. Our schemes for these universal quantum gates on a hybrid system have some advantages. First, all the gates are accomplished with the success probability of 100% in principle. Second, our schemes require no additional qubits. Third, the control qubits of the gates are easily manipulated and the target qubits are perfect for storage and processing. Fourth, the gates do not require that the transmission for the uncoupled cavity is balanceable to the reflectance for the coupled cavity, in order to get a high fidelity. Fifth, the devices for the three universal gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.

[1]  Fu-Guo Deng,et al.  Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. , 2012, Optics express.

[2]  Tie-Jun Wang,et al.  Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities , 2012 .

[3]  Zhang Yong Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities , 2011 .

[4]  Shou Zhang,et al.  Deterministic controlled-phase gate and preparation of cluster states via singly charged quantum dots in cavity quantum electrodynamics , 2011 .

[5]  Christian Schneider,et al.  Quantum dot induced phase shift in a pillar microcavity , 2011 .

[6]  C. Hu,et al.  Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity , 2010, 1005.5545.

[7]  Isabelle Sagnes,et al.  Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar , 2010, 1011.1155.

[8]  Cristian Bonato,et al.  CNOT and Bell-state analysis in the weak-coupling cavity QED regime. , 2010, Physical review letters.

[9]  W. J. Munro,et al.  Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity , 2009, 0910.4549.

[10]  Pierre M. Petroff,et al.  A Coherent Single-Hole Spin in a Semiconductor , 2009, Science.

[11]  Igor L. Markov,et al.  On the CNOT-cost of TOFFOLI gates , 2008, Quantum Inf. Comput..

[12]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[13]  William J. Munro,et al.  Deterministic photon entangler using a charged quantum dot inside a microcavity , 2008 .

[14]  Guang-Can Guo,et al.  Generation of quantum-dot cluster States with a superconducting transmission line resonator. , 2008, Physical review letters.

[15]  L. A. Coldren,et al.  Picosecond Coherent Optical Manipulation of a Single Electron Spin in a Quantum Dot , 2008, Science.

[16]  Pierre M. Petroff,et al.  Optical pumping of a single hole spin in a quantum dot , 2008, Nature.

[17]  J. L. O'Brien,et al.  Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon , 2007, 0708.2019.

[18]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[19]  Yanwen Wu,et al.  Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. , 2007, Physical review letters.

[20]  Christian Schneider,et al.  AlAs∕GaAs micropillar cavities with quality factors exceeding 150.000 , 2007 .

[21]  Astronomy,et al.  Observation of extremely slow hole spin relaxation in self-assembled quantum dots , 2007, 0705.1466.

[22]  T. Ladd,et al.  Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses. , 2006, Physical review letters.

[23]  A. Shabaev,et al.  Mode Locking of Electron Spin Coherences in Singly Charged Quantum Dots , 2006, Science.

[24]  Khaled Karrai,et al.  Quantum-Dot Spin-State Preparation with Near-Unity Fidelity , 2006, Science.

[25]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[26]  L. Liang Realization of quantum SWAP gate between flying and stationary qubits (4 pages) , 2005 .

[27]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[28]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[29]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[30]  Dieter Schuh,et al.  Optically programmable electron spin memory using semiconductor quantum dots , 2004, Nature.

[31]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[32]  Dirk Reuter,et al.  Radiatively limited dephasing in InAs quantum dots , 2004 .

[33]  Igor L. Markov,et al.  Minimal universal two-qubit controlled-NOT-based circuits (8 pages) , 2004 .

[34]  Colin P. Williams,et al.  Optimal Quantum Circuits for General Two-Qubit Gates , 2003, quant-ph/0308006.

[35]  G. Vidal,et al.  Universal quantum circuit for two-qubit transformations with three controlled-NOT gates , 2003, quant-ph/0307177.

[36]  C. Piermarocchi,et al.  Theory of quantum optical control of a single spin in a quantum dot , 2003, cond-mat/0301422.

[37]  A. Zunger,et al.  Pseudopotential calculation of the excitonic fine structure of million-atom self-assembledIn1−xGaxAs/GaAsquantum dots , 2003 .

[38]  A. Datta,et al.  Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence , 2003, quant-ph/0304044.

[39]  S. Bullock,et al.  Recognizing small-circuit structure in two-qubit operators (5 pages) , 2003 .

[40]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2002, Quantum Inf. Comput..

[41]  C. Piermarocchi,et al.  Optical RKKY interaction between charged semiconductor quantum dots. , 2002, Physical review letters.

[42]  J. Hvam,et al.  Long lived coherence in self-assembled quantum dots. , 2001, Physical review letters.

[43]  D. Bimberg,et al.  Ultralong dephasing time in InGaAs quantum dots. , 2001, Physical review letters.

[44]  D D Awschalom,et al.  Ultrafast Manipulation of Electron Spin Coherence , 2001, Science.

[45]  E. Dennis Toward fault-tolerant quantum computation without concatenation , 1999, quant-ph/9905027.

[46]  D. DiVincenzo,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999, quant-ph/9904096.

[47]  D. R. Yakovlev,et al.  Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas , 1998 .

[48]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[49]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[50]  Gilberto Medeiros-Ribeiro,et al.  Charged Excitons in Self-Assembled Semiconductor Quantum Dots , 1997 .

[51]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.