Rigorous design of distillation columns using surrogate models based on Kriging interpolation

The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed-integer nonlinear programs that are hard to solve, and require complex initialization procedures. In this article, we propose to address this challenging problem by substituting the distillation columns by Kriging-based surrogate models generated via state of the art distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate Kriging-based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical noise-free models. For distillation columns (slightly noisy systems), Karush–Kuhn–Tucker optimality conditions cannot be tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that contains the actual local minimum. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2169–2187, 2015

[1]  James E. Campbell,et al.  An Approach to Sensitivity Analysis of Computer Models: Part I—Introduction, Input Variable Selection and Preliminary Variable Assessment , 1981 .

[2]  Arthur W. Westerberg,et al.  Temperature-heat diagrams for complex columns. 3. Underwood's method for the Petlyuk configuration , 1989 .

[3]  Richard Turton,et al.  Analysis, Synthesis and Design of Chemical Processes , 2002 .

[4]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[5]  Sigurd Skogestad,et al.  Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements , 2003 .

[6]  Robin Smith,et al.  Chemical Process: Design and Integration , 2005 .

[7]  Rakesh Agrawal,et al.  Multicomponent thermally coupled systems of distillation columns at minimum reflux , 2001 .

[8]  Rakesh Agrawal,et al.  Synthesis of Distillation Column Configurations for a Multicomponent Separation , 1996 .

[9]  I. Grossmann,et al.  Rigorous flowsheet optimization using process simulators and surrogate models , 2008 .

[10]  Ignacio E. Grossmann,et al.  Design of distillation sequences: from conventional to fully thermally coupled distillation systems , 2004, Comput. Chem. Eng..

[11]  Sigurd Skogestad,et al.  Minimum Energy Consumption in Multicomponent Distillation. 1. V min Diagram for a Two , 2003 .

[12]  Johann Stichlmair,et al.  Superstructures for the mixed integer optimization of nonideal and azeotropic distillation processes , 1996 .

[13]  Rakesh Agrawal,et al.  A matrix method for multicomponent distillation sequences , 2009 .

[14]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[15]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[16]  Urmila M. Diwekar,et al.  An efficient sampling technique for off-line quality control , 1997 .

[17]  Ignacio E. Grossmann,et al.  Strategies for the robust simulation of thermally coupled distillation sequences , 2012, Comput. Chem. Eng..

[18]  J. Friedman Multivariate adaptive regression splines , 1990 .

[19]  Amy R. Ciric,et al.  Synthesis of nonequilibrium reactive distillation processes by MINLP optimization , 1994 .

[20]  Ignacio E. Grossmann,et al.  Synthesis of complex thermally coupled distillation systems including divided wall columns , 2013 .

[21]  Lorenz T. Biegler,et al.  Multi-scale optimization for process systems engineering , 2014, Comput. Chem. Eng..

[22]  N. Zheng,et al.  Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models , 2006, J. Glob. Optim..

[23]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[24]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[25]  Ignacio E. Grossmann,et al.  Alternative representations and formulations for the economic optimization of multicomponent distillation columns , 2003, Comput. Chem. Eng..

[26]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[27]  I. Grossmann,et al.  Optimal Design of Complex Distillation Columns Using Rigorous Tray-by-Tray Disjunctive Programming Models , 2000 .

[28]  Ignacio E. Grossmann,et al.  An alternate MINLP model for finding the number of trays required for a specified separation objective , 1993 .

[29]  C. Pantelides,et al.  Optimal design of thermally coupled distillation columns , 1999 .

[30]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[31]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[32]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[33]  William L. Luyben,et al.  Effect of Solvent on Controllability in Extractive Distillation , 2008 .

[34]  Lorenz T. Biegler,et al.  The Holistic Strategy in Multi-Scale Modeling , 2011 .

[35]  Michael James Sasena,et al.  Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. , 2002 .

[37]  Young Han Kim Rigorous design of extended fully thermally coupled distillation columns , 2002 .

[38]  Sigurd Skogestad,et al.  Minimum Energy Consumption in Multicomponent Distillation. 2. Three-Product Petlyuk Arrangements , 2003 .

[39]  Ignacio E. Grossmann,et al.  Rigorous Design of Distillation Columns: Integration of Disjunctive Programming and Process Simulators , 2005 .

[40]  Matthew J. Realff,et al.  Metamodeling Approach to Optimization of Steady-State Flowsheet Simulations: Model Generation , 2002 .

[41]  Z. Fidkowski,et al.  Minimum energy requirements of thermally coupled distillation systems , 1987 .

[42]  Ignacio E. Grossmann,et al.  A decomposition method for synthesizing complex column configurations using tray-by-tray GDP models , 2004, Comput. Chem. Eng..

[43]  Ignacio E. Grossmann,et al.  Generalized Disjunctive Programming Model for the Optimal Synthesis of Thermally Linked Distillation Columns , 2001 .

[44]  Johann Stichlmair,et al.  Design and economic optimization of azeotropic distillation processes using mixed-integer nonlinear programming , 1998 .

[45]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[46]  K. Madhavan,et al.  Development of dividing wall distillation column design space for a specified separation , 2002 .

[47]  F. Petlyuk Thermodynamically Optimal Method for Separating Multicomponent Mixtures , 1965 .

[48]  José Antonio Caballero,et al.  Logic hybrid simulation-optimization algorithm for distillation design , 2015, Comput. Chem. Eng..

[49]  H. Akaike A new look at the statistical model identification , 1974 .

[50]  Weifeng Chen,et al.  Interfacing IPOPT with Aspen Open Solvers and CAPE-OPEN , 2009 .

[51]  Mariana Barttfeld,et al.  Optimal Synthesis of Multicomponent Zeotropic Distillation Processes. 2. Preprocessing Phase and Rigorous Optimization of Efficient Sequences , 2003 .

[52]  C. Floudas,et al.  Synthesis of general distillation sequences : nonsharp separations , 1990 .

[53]  Sigurd Skogestad,et al.  Operation of Integrated Three-Product (Petlyuk) Distillation Columns , 1995 .

[54]  W. Marquardt,et al.  An efficient solution method for the MINLP optimization of chemical processes , 2007 .

[55]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007, DAC 2006.

[56]  David C. Miller,et al.  Learning surrogate models for simulation‐based optimization , 2014 .

[57]  Urmila M. Diwekar,et al.  Introduction to Applied Optimization , 2020, Springer Optimization and Its Applications.

[58]  Christos T. Maravelias,et al.  Surrogate‐based superstructure optimization framework , 2011 .

[59]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..

[60]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[61]  K. A. Amminudin,et al.  Design and Optimization of Fully Thermally Coupled Distillation Columns: Part 1: Preliminary Design and Optimization Methodology , 2001 .

[62]  Ignacio E. Grossmann,et al.  A disjunctive programming approach for the optimal design of reactive distillation columns , 2001 .

[63]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[64]  C. Triantafyllou,et al.  The design and optimisation of fully thermally coupled distillation columns : Process design , 1992 .

[65]  Pio A. Aguirre,et al.  Optimal Synthesis of Multicomponent Zeotropic Distillation Processes. 1. Preprocessing Phase and Rigorous Optimization for a Single Unit , 2002 .

[66]  Wolfgang Marquardt,et al.  Heat‐integrated distillation columns: Vapor recompression or internal heat integration? , 2012 .

[67]  Ignacio E. Grossmann,et al.  Optimal synthesis of thermally coupled distillation sequences using a novel MILP approach , 2014, Comput. Chem. Eng..

[68]  D. Himmelblau Applications of artificial neural networks in chemical engineering , 2000 .

[69]  Kenneth Holmstrom,et al.  The TOMLAB Optimization Environment in Matlab , 1999 .

[70]  R. Agrawal,et al.  More operable arrangements of fully thermally coupled distillation columns , 1998 .

[71]  Rakesh Agrawal,et al.  Synthesis of distillation configurations: I. Characteristics of a good search space , 2010, Comput. Chem. Eng..

[72]  Angelo Lucia,et al.  Multi-scale methods and complex processes: A survey and look ahead , 2010, Comput. Chem. Eng..

[73]  P. A. Newman,et al.  Optimization with variable-fidelity models applied to wing design , 1999 .

[74]  W. Luyben NGL Demethanizer Control , 2013 .

[75]  I. Grossmann,et al.  An algorithm for the use of surrogate models in modular flowsheet optimization , 2008 .

[76]  Kenneth Holmström,et al.  The TOMLAB Optimization Environment , 2004 .

[77]  M. Ierapetritou,et al.  A kriging method for the solution of nonlinear programs with black‐box functions , 2007 .

[78]  William H. Press,et al.  Numerical recipes in Fortran 77 : the art of scientificcomputing. , 1992 .

[79]  Juan P. Ruiz,et al.  Generalized Disjunctive Programming: A Framework for Formulation and Alternative Algorithms for MINLP Optimization , 2012 .

[80]  Ignacio E. Grossmann,et al.  Optimal feed locations and number of trays for distillation columns with multiple feeds , 1993 .

[81]  Lorenz T. Biegler,et al.  Distributed stream method for tray optimization , 2002 .

[82]  I. Grossmann,et al.  Disjunctive Programming Models for the Optimal Design of Distillation Columns and Separation Sequences , 2000 .

[83]  Claudia Baier,et al.  Principles Of Optimal Design Modeling And Computation , 2016 .