Dimensional synthesis of adjustable path generation linkages using the optimal slider adjustment

A desired continuous path can be generated precisely by an adjustable four-bar linkage. In this paper, a slider is used to adjust the pivot location of the driven side link. The linkage feasibility conditions and path generation flexibilities are analyzed. The synthesis model is established based on the optimal adjustment of the slider location. The global optimal solution is searched by genetic algorithm. The effectiveness of the synthesis approach proposed in the paper is verified by two demonstrated examples.

[1]  Arthur G. Erdman,et al.  A Method for Adjustable Planar and Spherical Four-Bar Linkage Synthesis , 2005 .

[2]  Subramaniam Rajan,et al.  Improving the efficiency of genetic algorithms for frame designs , 1998 .

[3]  George N. Sandor,et al.  Kinematic Synthesis of Adjustable Mechanisms—Part 2: Path Generation , 1973 .

[4]  Sridhar Kota,et al.  Synthesis of Programmable Mechanisms Using Adjustable Dyads , 1997 .

[5]  H. Zhou,et al.  Analysis and optimal synthesis of adjustable linkages for path generation , 2002 .

[6]  D. Kohli,et al.  Synthesis of cam-link mechanisms for exact path generation , 1979 .

[7]  Kwun-Lon Ting,et al.  Adjustable slider–crank linkages for multiple path generation , 2002 .

[8]  Raj S. Sodhi,et al.  Kinematic Synthesis of Adjustable RSSR-SS Mechanisms for Multi-Phase Finite and Multiply Separated Positions , 2003 .

[9]  Hong-Sen Yan,et al.  Optimal Synthesis of Cam-Linkage Mechanisms for Precise Path Generation , 2006 .

[10]  Kenneth J. Waldron,et al.  Synthesis of adjustable planar 4-bar mechanisms , 1979 .

[11]  Raj S. Sodhi,et al.  Kinematic synthesis of adjustable moving pivot four-bar mechanisms for multi-phase motion generation , 1996 .

[12]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[13]  G. N. Sandor,et al.  Kinematic Synthesis of Adjustable Mechanisms—Part 1: Function Generation , 1973 .

[14]  K. Deb,et al.  Design of truss-structures for minimum weight using genetic algorithms , 2001 .

[15]  V. Handra-Luca The Study of Adjustable Oscillating Mechanisms , 1973 .

[16]  H. Zhou,et al.  Adjustable four-bar linkages for multi-phase motion generation , 2004 .

[17]  Raj S. Sodhi,et al.  Kinematic synthesis of adjustable RRSS mechanisms for multi-phase motion generation , 2001 .

[18]  Osamu Sato,et al.  Kinematic Synthesis of Adjustable Mechanisms : Part 1, Path Generators , 1983 .

[19]  F. J. Kay,et al.  Adjustable Mechanisms for Exact Path Generation , 1975 .

[20]  Chi Feng Chang Synthesis of adjustable four-bar mechanisms generating circular arcs with specified tangential velocities , 2001 .

[21]  D. C Tao,et al.  Linkage mechanism adjustable for variable coupler curves with cusps , 1978 .

[22]  Terry E. Shoup,et al.  The design of an adjustable, three dimensional slider crank mechanism , 1984 .

[23]  D. C Tao,et al.  Linkage mechanism adjustable for variable symmetrical coupler curves with a double point , 1978 .

[24]  Kwun-Lon Ting,et al.  Five-Bar Grashof Criteria , 1986 .

[25]  Raj S. Sodhi,et al.  On the design of slider-crank mechanisms. Part II: multi-phase path and function generation , 2005 .

[26]  D. P Naik,et al.  Synthesis of adjustable four bar function generators through five bar loop closure equations , 1989 .

[27]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[28]  A. K. Mallik,et al.  Kinematic Analysis and Synthesis of Mechanisms , 1994 .

[29]  C. S. Krishnamoorthy,et al.  Structural optimization in practice: Potential applications of genetic algorithms , 2001 .

[30]  H. Zhou,et al.  Optimal synthesis of crank–rocker linkages for path generation using the orientation structural error of the fixed link , 2001 .

[31]  Jiaping Yang,et al.  Structural Optimization by Genetic Algorithms with Tournament Selection , 1997 .