Tracking of maneuvering target by using switching structure and heavy-tailed distribution with particle filter method
暂无分享,去创建一个
N. Ikoma | T. Higuchi | T. Higuchi | N. Ikoma | H. Maeda | Hiroshi Maeda
[1] Y. Bar-Shalom,et al. Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm , 1989 .
[2] G. Kitagawa. A self-organizing state-space model , 1998 .
[3] Y. Bar-Shalom,et al. The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .
[4] Jun S. Liu,et al. Sequential Monte Carlo methods for dynamic systems , 1997 .
[5] R. Singer. Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets , 1970, IEEE Transactions on Aerospace and Electronic Systems.
[6] Michael Isard,et al. CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.
[7] George W. Irwin,et al. Manoeuvring Target Tracking Using a Multiple-Model Bootstrap Filter , 2001, Sequential Monte Carlo Methods in Practice.
[8] H. Sorenson,et al. Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .
[9] G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .
[10] G. Kitagawa. A nonlinear smoothing method for time series analysis , 1991 .
[11] W. Dale Blair,et al. Interacting multiple model algorithm for solution to benchmark problem for tracking maneuvering targets , 1994, Defense, Security, and Sensing.
[12] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .