L1-Penalized Quantile Regression in High Dimensional Sparse Models
暂无分享,去创建一个
[1] M. Loève. On Almost Sure Convergence , 1951 .
[2] P. J. Huber. Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .
[3] H. Akaike. A new look at the statistical model identification , 1974 .
[4] T. C. Edens,et al. Economic Growth , 1957, The Journal of Economic History.
[5] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[6] S. Geman. A Limit Theorem for the Norm of Random Matrices , 1980 .
[7] R. Levine,et al. A Sensitivity Analysis of Cross-Country Growth Regressions , 1991 .
[8] S. Portnoy. Asymptotic behavior of regression quantiles in non-stationary, dependent cases , 1991 .
[9] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[10] C. Gutenbrunner,et al. Regression Rank Scores and Regression Quantiles , 1992 .
[11] Moshe Buchinsky. CHANGES IN THE U.S. WAGE STRUCTURE 1963-1987: APPLICATION OF QUANTILE REGRESSION , 1994 .
[12] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[13] P. Laplace. Théorie analytique des probabilités , 1995 .
[14] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[15] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[16] X. Sala-i-Martin,et al. I Just Ran Two Million Regressions , 1997 .
[17] R. Koenker,et al. The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .
[18] John N. Tsitsiklis,et al. Introduction to linear optimization , 1997, Athena scientific optimization and computation series.
[19] Keith Knight,et al. Limiting distributions for $L\sb 1$ regression estimators under general conditions , 1998 .
[20] R. Koenker,et al. Goodness of Fit and Related Inference Processes for Quantile Regression , 1999 .
[21] Wenjiang J. Fu,et al. Asymptotics for lasso-type estimators , 2000 .
[22] V. Chernozhukov. Extremal quantile regression , 2005, math/0505639.
[23] Jianqing Fan,et al. Sure independence screening for ultrahigh dimensional feature space , 2006, math/0612857.
[24] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[25] Florentina Bunea,et al. Aggregation and sparsity via 1 penalized least squares , 2006 .
[26] Santosh S. Vempala,et al. The geometry of logconcave functions and sampling algorithms , 2007, Random Struct. Algorithms.
[27] A. Tsybakov,et al. Aggregation for Gaussian regression , 2007, 0710.3654.
[28] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[29] S. Vempala,et al. The geometry of logconcave functions and sampling algorithms , 2007 .
[30] A. Belloni,et al. On the Computational Complexity of MCMC-Based Estimators in Large Samples , 2007 .
[31] R. Koenker,et al. Regression Quantiles , 2007 .
[32] A. Belloni,et al. On the Computational Complexity of MCMC-Based Estimators in Large Samples , 2007, 0704.2167.
[33] A. Tsybakov,et al. Sparsity oracle inequalities for the Lasso , 2007, 0705.3308.
[34] S. Geer. HIGH-DIMENSIONAL GENERALIZED LINEAR MODELS AND THE LASSO , 2008, 0804.0703.
[35] Cun-Hui Zhang,et al. The sparsity and bias of the Lasso selection in high-dimensional linear regression , 2008, 0808.0967.
[36] Aarnout Brombacher,et al. Probability... , 2009, Qual. Reliab. Eng. Int..
[37] N. Meinshausen,et al. LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.
[38] Massimiliano Pontil,et al. Taking Advantage of Sparsity in Multi-Task Learning , 2009, COLT.
[39] A. Belloni,et al. Least Squares After Model Selection in High-Dimensional Sparse Models , 2009, 1001.0188.
[40] V. Koltchinskii. Sparsity in penalized empirical risk minimization , 2009 .
[41] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[42] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[43] A. Tsybakov,et al. Sparse recovery under matrix uncertainty , 2008, 0812.2818.
[44] H. Bateman. Book Review: Ergebnisse der Mathematik und ihrer Grenzgebiete , 1933 .