Survey of Intelligent Control Techniques for Humanoid Robots

This paper focusses on the application of intelligent control techniques (neural networks, fuzzy logic and genetic algorithms) and their hybrid forms (neuro-fuzzy networks, neuro-genetic and fuzzy-genetic algorithms) in the area of humanoid robotic systems. It represents an attempt to cover the basic principles and concepts of intelligent control in humanoid robotics, with an outline of a number of recent algorithms used in advanced control of humanoid robots. Overall, this survey covers a broad selection of examples that will serve to demonstrate the advantages and disadvantages of the application of intelligent control techniques.

[1]  Yuan F. Zheng,et al.  Gait synthesis for a biped robot climbing sloping surfaces using neural networks. II. Dynamic learning , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[2]  Rodney A. Brooks,et al.  From earwigs to humans , 1997, Robotics Auton. Syst..

[3]  Kazuo Hirai,et al.  Current and future perspective of Honda humamoid robot , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[4]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[5]  Guy Bessonnet,et al.  An anthropomorphic biped robot: dynamic concepts and technological design , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[6]  Michio Sugeno,et al.  Fuzzy systems theory and its applications , 1991 .

[7]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[8]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[9]  Atsuo Takanishi,et al.  Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[10]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[11]  Guy Bessonnet,et al.  Gait analysis of a human walker wearing robot feet as shoes , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[12]  M.-Y. Cheng,et al.  Genetic algorithm for control design of biped locomotion , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[13]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[14]  Jih-Gau Juang,et al.  Gait synthesis of a biped robot using backpropagation through time algorithm , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[15]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[16]  Phil Husbands,et al.  Evolution of central pattern generators for bipedal walking in a real-time physics environment , 2002, IEEE Trans. Evol. Comput..

[17]  Jerry E. Pratt,et al.  Stable adaptive control of a bipedal walking; robot with CMAC neural networks , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[18]  Minoru Asada,et al.  Developmental Approach to Spatial Perception for Imitation Learning: Incremental Demonstrator's View Recovery by Modular Neural Network , 2001 .

[19]  Peggy Israel Doerschuk,et al.  A modular approach to intelligent control of a simulated jointed leg , 1998, IEEE Robotics Autom. Mag..

[20]  Filson H. Glanz,et al.  Application of a General Learning Algorithm to the Control of Robotic Manipulators , 1987 .

[21]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[22]  Yuan F. Zheng,et al.  Gait synthesis for the SD-2 biped robot to climb sloping surface , 1990, IEEE Trans. Robotics Autom..

[23]  Toshio Fukuda,et al.  Stabilization control of biped locomotion robot based learning with GAs having self-adaptive mutation and recurrent neural networks , 1997, Proceedings of International Conference on Robotics and Automation.

[24]  Stefan Schaal,et al.  Real Time Learning in Humanoids: A challenge for scalability of Online Algorithms , 2000 .

[25]  Aude Billard,et al.  Learning human arm movements by imitation: : Evaluation of a biologically inspired connectionist architecture , 2000, Robotics Auton. Syst..

[26]  Andrew L. Kun,et al.  Control of variable speed gaits for a biped robot , 1999, IEEE Robotics Autom. Mag..

[27]  Wang,et al.  A neuromorphic controller for a three-link biped robot , 1989 .

[28]  Jih-Gau Juang,et al.  Fuzzy neural network approaches for robotic gait synthesis , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[29]  Kian Hsiang Low,et al.  Combined use of ground learning model and active compliance to the motion control of walking robotic legs , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[30]  Ambarish Goswami,et al.  Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point , 1999, Int. J. Robotics Res..

[31]  Jon Rigelsford,et al.  Behaviour‐based Robotics , 2001 .

[32]  Yuan F. Zheng,et al.  Reinforcement learning for a biped robot to climb sloping surfaces , 1997 .

[33]  W.T. Miller Real-time neural network control of a biped walking robot , 1994, IEEE Control Systems.

[34]  Hiroaki Kitano,et al.  A method for co-evolving morphology and walking pattern of biped humanoid robot , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[35]  Yuan F. Zheng,et al.  Gait synthesis for a biped robot climbing sloping surfaces using neural networks. I. Static learning , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[36]  Mitsuo Kawato,et al.  Internal models for motor control and trajectory planning , 1999, Current Opinion in Neurobiology.

[37]  Antonio A. F. Oliveira,et al.  Tracing Patterns and Attention: Humanoid Robot Cognition , 2000, IEEE Intell. Syst..

[38]  Shinzo Kitamura,et al.  Autonomous trajectory generation of a biped locomotive robot , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[39]  Mattias Wahde,et al.  A flexible evolutionary method for the generation and implementation of behaviors for humanoid robots , 2001 .

[40]  Changjiu Zhou,et al.  Reinforcement learning with fuzzy evaluative feedback for a biped robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[41]  Kenji Doya,et al.  Neural mechanisms of learning and control , 2001 .

[42]  Friedrich Pfeiffer,et al.  The concept of jogging JOHNNIE , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[43]  Blake Hannaford,et al.  McKibben artificial muscles: pneumatic actuators with biomechanical intelligence , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[44]  Qiang Huang,et al.  Humanoids walk with feedforward dynamic pattern and feedback sensory reflection , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[45]  Ilya A. Rybak,et al.  Neurobiological and neurorobotic approaches to control architectures for a humanoid motor system , 2001, Robotics Auton. Syst..

[46]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[47]  H. K. Low,et al.  Fuzzy position/force control of a robot leg with a flexible gear system , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[48]  Masayuki Inaba,et al.  Acquisition of visually guided swing motion based on genetic algorithms and neural networks in two-armed bipedal robot , 1997, Proceedings of International Conference on Robotics and Automation.

[49]  M. Kawato,et al.  Hierarchical neural network model for voluntary movement with application to robotics , 1988, IEEE Control Systems Magazine.

[50]  Maja J. Matarić,et al.  Behavior-based primitives for articulated control , 1998 .

[51]  Toshio Fukuda,et al.  Natural motion generation of biped locomotion robot using hierarchical trajectory generation method consisting of GA, EP layers , 1997, Proceedings of International Conference on Robotics and Automation.

[52]  Giovanni Muscato,et al.  Dynamically stable trajectory synthesis for a biped robot during the single-support phase , 2001, 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556).