An Emergence Principle for Complex Systems

From elementary system graph representation, systems are shown to belong to only three states: simple, complicated, and complex. First two have been studied over past centuries. Last one originates in existence of threshold above which components interaction overtakes outside interaction, leading to system self-organization which filters outer action, making it more robust with emergence of new behaviour not predictable from components study. The threshold value, expressed in terms of coupling system parameters, is verified to recovers limits found in a broad range of domains in Physics and Mathematics, giving explicit criterion for emergence in complex system. Application to man-made systems concentrates on the balance between relative system isolation when becoming complex and delegation of more “intelligence” in adequate frame between new augmented system state and supervising operator. Entering complexity state opens the possibility for the function to feedback onto the structure, ie to mimic technically the early invention of Nature.

[1]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[2]  A. Goriely Integrability and Nonintegrability of Dynamical Systems , 2001 .

[3]  S. Funtowicz,et al.  EMERGENT COMPLEX SYSTEMS , 1994 .

[4]  B B Kadomtsev Self-organization and transport in tokamak plasma , 1992 .

[5]  W. Kyner,et al.  Lectures on Hamiltonian systems . Rigorous and formal stability of orbits about an oblate planet , 1968 .

[6]  T. A. Burton,et al.  Stability by Fixed Point Theory for Functional Differential Equations , 2006 .

[7]  Isaak Burovoi,et al.  Control of Indefinite Nonlinear Dynamic Systems , 1998 .

[8]  Guy Theraulaz,et al.  Self-Organization in Biological Systems , 2001, Princeton studies in complexity.

[9]  L. Lugiato Theory of open systems I , 1975 .

[10]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 1994 .

[11]  A. Feinstein,et al.  Variational Methods for the Study of Nonlinear Operators , 1966 .

[12]  Michel Cotsaftis Robust Asymptotic Control for Intelligent Unknown Mechatronic Systems , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[13]  V. N. Bogaevski,et al.  Algebraic methods in nonlinear perturbation theory , 1991 .

[14]  Bart Kosko,et al.  Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence , 1991 .

[15]  H. Risken Fokker-Planck Equation , 1984 .

[16]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[17]  P. Anderson More is different. , 1972, Science.

[18]  M. Cotsaftis Popov condition revisited for other nonlinear systems , 2003, Proceedings of the 2003 IEEE International Symposium on Intelligent Control.

[19]  G. W. Ng application of Neural Networks to Adaptive Control of Nonlinear Systems , 1997 .

[20]  Donald O. Walter,et al.  Self-Organizing Systems , 1987, Life Science Monographs.

[21]  G. Dullerud,et al.  A Course in Robust Control Theory: A Convex Approach , 2005 .

[22]  Isaak Burovoi,et al.  Control of indefinite nonlinear dynamic systems : induced internal feedback , 1998 .

[23]  D. Salamon,et al.  Kolmogorov–Arnold–Moser theorem , 2019, 100 Years of Math Milestones.

[24]  Werner Ebeling,et al.  Self-Organization, Active Brownian Dynamics, and Biological Applications , 2002, cond-mat/0211606.

[25]  Gregory Falkovich,et al.  Kolmogorov Spectra of Turbulence I , 1992 .

[26]  Alexander M. Krasnosel’skii Asymptotics of Nonlinearities and Operator Equations , 1995 .

[27]  Ilya Grigorenko Optimal control and forecasting of complex dynamical systems , 2006 .

[28]  Michel Cotsaftis,et al.  A Passage to Complex Systems , 2009 .

[29]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[30]  Eric A Sobie,et al.  An Introduction to Dynamical Systems , 2011, Science Signaling.

[31]  K. Deimling Nonlinear functional analysis , 1985 .

[32]  Wei-Min Shen,et al.  Hormone-Inspired Self-Organization and Distributed Control of Robotic Swarms , 2004, Auton. Robots.

[33]  Fernando Paganini,et al.  A Course in Robust Control Theory , 2000 .

[34]  M. Tabor Chaos and Integrability in Nonlinear Dynamics: An Introduction , 1989 .

[35]  Stephen Wiggins,et al.  Chaotic transport in dynamical systems , 1991 .

[36]  G. Leonov,et al.  Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications , 1996 .

[37]  Alan Garfinkel,et al.  Self-organizing systems : the emergence of order , 1987 .

[38]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control , 1994 .

[39]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: PRINCIPAL CLASSES OF ASYMPTOTIC TOPOLOGICAL INVARIANTS , 1995 .

[40]  Luigi Amerio,et al.  Almost-periodic functions and functional equations , 1971 .

[41]  M. Cotsaftis On a definition of task oriented intelligent control , 2002, Proceedings of the IEEE Internatinal Symposium on Intelligent Control.

[42]  Ralph D. Lorenz,et al.  Non-equilibrium Thermodynamics and the Production of Entropy , 2005 .

[43]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[44]  Hermann Haken,et al.  Information and Self-Organization: A Macroscopic Approach to Complex Systems , 2010 .

[45]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[46]  M. Rao,et al.  Theory of Orlicz spaces , 1991 .

[47]  I. Prigogine,et al.  Formative Processes. (Book Reviews: Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations) , 1977 .

[48]  F. Schweitzer Multi-Agent Approach to the Self-Organization of Networks , 2007, 0704.2533.

[49]  Howard Hunt Pattee,et al.  Hierarchy Theory: The Challenge of Complex Systems , 1973 .

[50]  J. Grasman Asymptotic Methods for Relaxation Oscillations and Applications , 1987 .

[51]  G. Zames,et al.  Feedback control, nonlinear systems, and complexity , 1995 .

[52]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[53]  Michael Brereton,et al.  Introduction to the Physics of Complex Systems (The Mesoscopic Approach to Fluctuations, Nonlinearity and Self-organization) , 1987 .

[54]  M. Cotsaftis,et al.  Merging Information Technologies with Mechatronics The Autonomous Intelligence Challenge , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[55]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[56]  Karl Johan Åström,et al.  Control of complex systems , 2001 .

[57]  S. Lefschetz Stability of nonlinear control systems , 1966 .

[58]  Michel Cotsaftis,et al.  What Makes a System Complex? - An Approach to Self Organization and Emergence , 2007, 0706.0440.

[59]  B. Chirikov,et al.  Statistical Properties of a Nonlinear String , 1966 .

[60]  Harold J. Morowitz,et al.  The emergence of complexity , 1995, Complex..

[61]  C. M. Place,et al.  An Introduction to Dynamical Systems , 1990 .

[62]  Michel Cotsaftis,et al.  From Trajectory Control to Task Space Control – Emergence of Self Organization in Complex Systems , 2006 .

[63]  V. Arnold,et al.  Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics , 1989 .