Motif discovery within upstream regions of variable length reveals regulatory signatures in peach

[1]  J. van Helden,et al.  Tuning promoter boundaries improves regulatory motif discovery in nonmodel plants: the peach example , 2021, Plant physiology.

[2]  Jinpu Jin,et al.  PlantRegMap: charting functional regulatory maps in plants , 2019, Nucleic Acids Res..

[3]  Robert J. Schmitz,et al.  The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family , 2018, Nature Communications.

[4]  Denis Thieffry,et al.  RSAT 2018: regulatory sequence analysis tools 20th anniversary , 2018, Nucleic Acids Res..

[5]  I. Grosse,et al.  Diversity of cis-regulatory elements associated with auxin response in Arabidopsis thaliana , 2017, Journal of experimental botany.

[6]  Juan Yan,et al.  Transcriptome analysis of peach [Prunus persica (L.) Batsch] stigma in response to low-temperature stress with digital gene expression profiling , 2017, Journal of Plant Biochemistry and Biotechnology.

[7]  S. Shu,et al.  The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity , 2017, BMC Genomics.

[8]  Christina E. Wells,et al.  Transcriptional Responses in Root and Leaf of Prunus persica under Drought Stress Using RNA Sequencing , 2016, Front. Plant Sci..

[9]  G. Zararsiz,et al.  Global Transcriptome Analysis Reveals Differences in Gene Expression Patterns Between Nonhyperhydric and Hyperhydric Peach Leaves , 2016, The plant genome.

[10]  Lior Pachter,et al.  Differential analysis of RNA-seq incorporating quantification uncertainty , 2016, Nature Methods.

[11]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[12]  Paula Vizoso,et al.  Transcriptomic analysis of fruit stored under cold conditions using controlled atmosphere in Prunus persica cv. “Red Pearl” , 2015, Front. Plant Sci..

[13]  P. Arús,et al.  Identification of volatile and softening-related genes using digital gene expression profiles in melting peach , 2015, Tree Genetics & Genomes.

[14]  P. Martínez-Gómez,et al.  Prunus transcription factors: breeding perspectives , 2015, Front. Plant Sci..

[15]  Hsin-Hung Lin,et al.  Transcriptome dynamics of developing maize leaves and genomewide prediction of cis elements and their cognate transcription factors , 2015, Proceedings of the National Academy of Sciences.

[16]  A. Kornblihtt,et al.  Let there be light: Regulation of gene expression in plants , 2014, RNA biology.

[17]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[18]  Bruno Contreras-Moreira,et al.  footprintDB: a database of transcription factors with annotated cis elements and binding interfaces , 2014, Bioinform..

[19]  J. Helden,et al.  A complete workflow for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs , 2012, Nature Protocols.

[20]  L. Bülow,et al.  Integration of Bioinformatics and Synthetic Promoters Leads to the Discovery of Novel Elicitor-Responsive cis-Regulatory Sequences in Arabidopsis1[C][W][OA] , 2012, Plant Physiology.

[21]  P. Arús,et al.  The peach genome , 2012, Tree Genetics & Genomes.

[22]  Markus J. Tamás,et al.  Evolutionary forces act on promoter length: identification of enriched cis-regulatory elements. , 2009, Molecular biology and evolution.

[23]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[24]  J. Collado-Vides,et al.  Discovering regulatory elements in non-coding sequences by analysis of spaced dyads. , 2000, Nucleic acids research.

[25]  J. Collado-Vides,et al.  Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. , 1998, Journal of molecular biology.