Level-Set Methods for Tensor-Valued Images

Tensor-valued data are becoming more and more important as input for todays image analysis problems. This has been caused by a number of applications including diffusion tensor (DT-) MRI and physical measurements of anisotropic behaviour such as stress-strain relationships, interia and permittivity tensors. Consequently, there arises the need to filter and segment such tensor fields. In this paper we extend three important level set methods to tensor-valued data. To this end we first generalise Di Zenzo’s concept of a structure tensor for vector-valued images to tensor-valued data. This allows us to derive formulations of mean curvature motion and self-snakes in the case of tensor-valued images. We prove that these processes maintain positive semidefiniteness if the initial matrix data are positive semidefinite. Finally we present a geodesic active contour model for segmenting tensor fields. Since it incorporates information from all channels, it gives a contour representation that is highly robust under noise.

[1]  G. Huisken Flow by mean curvature of convex surfaces into spheres , 1984 .

[2]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[3]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[4]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[5]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[6]  A. R. Rao,et al.  Computing oriented texture fields , 1989, CVPR 1989.

[7]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[9]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[11]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[12]  Baba C. Vemuri,et al.  Topology-independent shape modeling scheme , 1993, Optics & Photonics.

[13]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[14]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[15]  Antonin Chambolle,et al.  Partial differential equations and image processing , 1994, Proceedings of 1st International Conference on Image Processing.

[16]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[17]  Guillermo Sapiro,et al.  Vector (self) snakes: a geometric framework for color, texture, and multiscale image segmentation , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[18]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[19]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[20]  J. Morel,et al.  Partial differential equations and image iterative filtering , 1997 .

[21]  Isabelle Bloch,et al.  Regularization of MR Diffusion Tensor Maps for Tracking Brain White Matter Bundles , 1998, MICCAI.

[22]  Joachim Weickert,et al.  Coherence-enhancing diffusion of colour images , 1999, Image Vis. Comput..

[23]  Carl-Fredrik Westin,et al.  Image Processing for Diffusion Tensor Magnetic Resonance Imaging , 1999, MICCAI.

[24]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[25]  Guillermo Sapiro,et al.  On the level lines and geometry of vector-valued images , 2000, IEEE Signal Processing Letters.

[26]  Mi-Suen Lee,et al.  A Computational Framework for Segmentation and Grouping , 2000 .

[27]  J. Schnabel,et al.  Nonlinear smoothing for reduction of systematic and random errors in diffusion tensor imaging , 2000, Journal of magnetic resonance imaging : JMRI.

[28]  Simon R. Arridge,et al.  A Regularization Scheme for Diffusion Tensor Magnetic Resonance Images , 2001, IPMI.

[29]  Klaus Hahn,et al.  Edge Preserving Regularization and Tracking for Diffusion Tensor Imaging , 2001, MICCAI.

[30]  B. Vemuri,et al.  Fiber tract mapping from diffusion tensor MRI , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[31]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[32]  Ross T. Whitaker,et al.  Variable-conductance, level-set curvature for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[33]  Hans Hagen,et al.  Vector and Tensor Field Topology Simplification on Irregular Grids , 2001, VisSym.

[34]  David E. Breen,et al.  Level Set Modeling and Segmentation of DT-MRI Brain Data , 2001 .

[35]  Kaleem Siddiqi,et al.  A geometric flow for white matter fibre tract reconstruction , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[36]  Martin Rumpf,et al.  A Level Set Method for Anisotropic Geometric Diffusion in 3D Image Processing , 2002, SIAM J. Appl. Math..

[37]  T. Brox,et al.  Diffusion and regularization of vector- and matrix-valued images , 2002 .

[38]  Thomas Brox,et al.  Nonlinear Matrix Diffusion for Optic Flow Estimation , 2002, DAGM-Symposium.

[39]  Rachid Deriche,et al.  Vector-valued image regularization with PDE's: a common framework for different applications , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[40]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[41]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[42]  Rachid Deriche,et al.  Unsupervised Segmentation Incorporating Colour, Texture, and Motion , 2003, CAIP.

[43]  Guillermo Sapiro,et al.  Vector Median Filters, Inf-Sup Operations, and Coupled PDE's: Theoretical Connections , 2000, Journal of Mathematical Imaging and Vision.

[44]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[45]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[46]  Rachid Deriche,et al.  Orthonormal Vector Sets Regularization with PDE's and Applications , 2002, International Journal of Computer Vision.