Maintaining atmospheric mass and water balance in reanalyses

This study describes the modifications made to the Goddard Earth Observing System (GEOS) Atmospheric Data Assimilation System (ADAS) to conserve atmospheric dry-air mass and to guarantee that the net source of water from precipitation and surface evaporation equals the change in total atmospheric water. The modifications involve changes to both the atmospheric model and the analysis procedure. In the model, sources and sinks of water are included in the continuity equation; in the analysis, constraints are imposed to penalize (and thus minimize) analysis increments of dry-air mass. Finally, changes are also required to the Incremental Analysis Update (IAU) procedure. The effects of these modifications are separately evaluated in free-running and assimilation experiments. Results are also presented from a multiyear reanalysis (Version 2 of the Modern Era Retrospective-Analysis for Research and Applications: MERRA-2) that uses the modified system.

[1]  Shian‐Jiann Lin A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .

[2]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[3]  Kevin E. Trenberth,et al.  Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses , 2011 .

[4]  Olivier Pannekoucke,et al.  On the Merits of Using a 3D-FGAT Assimilation Scheme with an Outer Loop for Atmospheric Situations Governed by Transport , 2010 .

[5]  Klaus P. Hoinka,et al.  Mean global surface pressure series evaluated from ECMWF reanalysis data , 1998 .

[6]  Chung-Lin Shie,et al.  A note on reviving the Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) dataset , 2009 .

[7]  John Derber,et al.  A Global Oceanic Data Assimilation System , 1989 .

[8]  Kevin E. Trenberth,et al.  Global atmospheric mass, surface pressure, and water vapor variations , 1987 .

[9]  R. Purser,et al.  Three-Dimensional Variational Analysis with Spatially Inhomogeneous Covariances , 2002 .

[10]  M. Bosilovich,et al.  The Effect of Satellite Observing System Changes on MERRA Water and Energy Fluxes , 2011 .

[11]  K. Trenberth,et al.  The total mass of the atmosphere , 1994 .

[12]  Paul Poli,et al.  Atmospheric conservation properties in ERA‐Interim , 2011 .

[13]  Kevin E. Trenberth,et al.  The Mass of the Atmosphere: A Constraint on Global Analyses , 2005 .

[14]  J. Derber,et al.  Introduction of the GSI into the NCEP Global Data Assimilation System , 2009 .

[15]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[16]  Lawrence L. Takacs,et al.  Data Assimilation Using Incremental Analysis Updates , 1996 .

[17]  Yannick Trémolet,et al.  Preconditioning of variational data assimilation and the use of a bi‐conjugate gradient method , 2013 .

[18]  A. Bodas‐Salcedo,et al.  Physically Consistent Responses of the Global Atmospheric Hydrological Cycle in Models and Observations , 2014, Surveys in Geophysics.

[19]  Dick Dee,et al.  On the choice of variable for atmospheric moisture analysis , 2022 .

[20]  Kevin E. Trenberth,et al.  Regional Energy and Water Cycles: Transports from Ocean to Land , 2013 .

[21]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[22]  B. Soden,et al.  Robust Responses of the Hydrological Cycle to Global Warming , 2006 .

[23]  Michael G. Bosilovich,et al.  Global Energy and Water Budgets in MERRA , 2011 .

[24]  Yayoi Harada,et al.  The Japanese 55-year Reanalysis "JRA-55": An Interim Report , 2011 .

[25]  Kevin E. Trenberth,et al.  Climate Diagnostics from Global Analyses: Conservation of Mass in ECMWF Analyses , 1991 .

[26]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .