A Dynamical System Approach to Phase Transitions for p-Adic Potts Model on the Cayley Tree of Order Two
暂无分享,去创建一个
[1] P. Freund,et al. Non-archimedean strings , 1987 .
[2] David K. Arrowsmith,et al. Some p-adic representations of the Smale horseshoe , 1993 .
[3] On Gibbs measures of P-adic Potts model on the cayley tree , 2005, math-ph/0510025.
[4] p-adic valued probability measures , 1996 .
[5] V. A. Avetisov,et al. Application of p-adic analysis to models of spontaneous breaking of the replica symmetry , 2008 .
[6] A. C. M. van Rooij,et al. Non-Archimedean functional analysis , 1978 .
[7] S. V. Kozyrev,et al. Ultrametric random field. , 2006 .
[8] Andrei Khrennikov,et al. Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models , 2011 .
[9] On p-adic quasi Gibbs measures for q + 1-state Potts model on the Cayley tree , 2010 .
[10] Giorgio Parisi,et al. On the p-adic five-point function , 1988 .
[11] Neal Koblitz,et al. p-adic numbers , 1977 .
[12] Andrei Khrennikov,et al. The measure-theoretical approach to $p$-adic probability theory , 1999 .
[13] D. Arrowsmith,et al. Geometry of p -adic Siegel discs , 1994 .
[14] Existence of a Phase Transition for the Potts p-adic Model on the Set ℤ , 2002 .
[15] F. Mukhamedov. On the existence of generalized gibbs measures for the one-dimensional p-adic countable state Potts model , 2009 .
[16] Сергей Владимирович Козырев,et al. Всплески и спектральный анализ ультраметрических псевдодифференциальных операторов@@@Wavelets and spectral analysis of ultrametric pseudodifferential operators , 2007 .
[17] I. Volovich. Number theory as the ultimate physical theory , 1987 .
[18] p-adic repellers in Qp are subshifts of finite type , 2007 .
[19] Quantum mechanics andp-adic numbers , 1972 .
[20] ON INHOMOGENEOUS p-ADIC POTTS MODEL ON A CAYLEY TREE , 2005, math-ph/0510024.
[22] S. V. Kozyrev. Ultrametric pseudodifferential operators and wavelets for the case of non homogeneous measure , 2008 .
[23] S. V. Kozyrev,et al. Replica Symmetry Breaking Related to a General Ultrametric Space I: Replica Matrices and Functionals , 2022 .
[24] S. V. Kozyrev,et al. Application of p-adic analysis to models of breaking of replica symmetry , 1999 .
[25] Jia-Yan Yao,et al. Strict ergodicity of affine p-adic dynamical systems on Zp , 2007 .
[26] E. Thiran,et al. p-adic dynamics , 1989 .
[27] A. F. Monna,et al. Intégration non-archimédienne II , 1963 .
[28] On $p$-adic Gibbs measures of countable state Potts model on the Cayley tree , 2007, 0705.0244.
[29] On P-adic λ-model on the Cayley tree , 2004 .
[30] Sergio Albeverio,et al. A random walk on p-adics - the generator and its spectrum , 1994 .
[31] F. Y. Wu. The Potts model , 1982 .
[32] WEAK SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS OVER THE FIELD OF $p$-ADIC NUMBERS , 2007, 0708.1706.
[33] Karl-Olof Lindahl. On Siegel's linearization theorem for fields of prime characteristic , 2004 .
[34] Nigel P. Smart,et al. p-adic Chaos and Random Number Generation , 1998, Exp. Math..
[35] R. Dobrushin. The problem of uniqueness of a gibbsian random field and the problem of phase transitions , 1968 .
[36] Extension of measures to infinite-dimensional spaces over $p$-adic field , 2000 .
[37] R. Dobrushin. Prescribing a System of Random Variables by Conditional Distributions , 1970 .
[38] Andrei Khrennikov. Generalized probabilities taking values in non-Archimedean fields and in topological groups , 2005 .
[39] A. Figá-Talamanca,et al. Diffusion on locally compact ultrametric spaces , 2004 .
[40] Igor Volovich,et al. p-adic string , 1987 .
[41] A. Khrennikov,et al. Wavelets on ultrametric spaces , 2005 .
[42] Robert L. Benedetto,et al. Hyperbolic maps in p-adic dynamics , 2001, Ergodic Theory and Dynamical Systems.
[43] Sergio Albeverio,et al. Measure-valued branching processes associated with random walks on $p$-adics , 2000 .
[44] S Albeverio,et al. Memory retrieval as a p-adic dynamical system. , 1999, Bio Systems.
[45] Igor Volovich,et al. On the p-adic summability of the anharmonic oscillator , 1988 .
[46] B. Dragovich,et al. THE WAVE FUNCTION OF THE UNIVERSE AND p-ADIC GRAVITY , 1991 .
[47] S. Albeverio,et al. Theory of p -adic Distributions: Linear and Nonlinear Models: References , 2010 .