Ultralow nonalloyed Ohmic contact resistance to self aligned N-polar GaN high electron mobility transistors by In(Ga)N regrowth

Ultralow Ohmic contact resistance and a self-aligned device structure are necessary to reduce the effect of parasitic elements and obtain higher ft and fmax in high electron mobility transistors (HEMTs). N-polar (0001¯) GaN HEMTs, offer a natural advantage over Ga-polar HEMTs, in terms of contact resistance since the contact is not made through a high band gap material [Al(Ga)N]. In this work, we extend the advantage by making use of polarization induced three-dimensional electron-gas through regrowth of graded InGaN and thin InN cap in the contact regions by plasma (molecular beam epitaxy), to obtain an ultralow Ohmic contact resistance of 27 Ω μm to a GaN 2DEG.