A roadmap for electronic grade 2D materials

Since their modern debut in 2004, 2-dimensional (2D) materials continue to exhibit scientific and industrial promise, providing a broad materials platform for scientific investigation, and development of nano- and atomic-scale devices. A significant focus of the last decade’s research in this field has been 2D semiconductors, whose electronic properties can be tuned through manipulation of dimensionality, substrate engineering, strain, and doping (Mak et al 2010 Phys. Rev. Lett. 105 136805; Zhang et al 2017 Sci. Rep. 7 16938; Conley et al 2013 Nano Lett. 13 3626–30; Li et al 2016 Adv. Mater. 28 8240–7; Rhodes et al 2017 Nano Lett. 17 1616–22; Gong et al 2014 Nano Lett. 14 442–9; Suh et al 2014 Nano Lett. 14 6976–82; Yoshida et al 2015 Sci. Rep. 5 14808). Molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) have dominated recent interest for potential integration in electronic technologies, due to their intrinsic and tunable properties, atomic-scale thicknesses, and relative ease of stacking to create new and custom structures. However, to go ‘beyond the bench’, advances in large-scale, 2D layer synthesis and engineering must lead to ‘exfoliation-quality’ 2D layers at the wafer scale. This roadmap aims to address this grand challenge by identifying key technology drivers where 2D layers can have an impact, and to discuss synthesis and layer engineering for the realization of electronic-grade, 2D materials. We focus on three fundamental areas of research that must be heavily pursued in both experiment and computation to achieve high-quality materials for electronic and optoelectronic applications.

[1]  Y. Ji,et al.  Multiscale framework for simulation-guided growth of 2D materials , 2018, npj 2D Materials and Applications.

[2]  J. Warner,et al.  Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides. , 2018, Chemical Society reviews.

[3]  K. Barla,et al.  Layer-controlled epitaxy of 2D semiconductors: bridging nanoscale phenomena to wafer-scale uniformity , 2018, Nanotechnology.

[4]  E. Pop,et al.  Research Update: Recent progress on 2D materials beyond graphene: From ripples, defects, intercalation, and valley dynamics to straintronics and power dissipation , 2018, APL Materials.

[5]  M. Terrones,et al.  Excitonic processes in atomically-thin MoSe2/MoS2 vertical heterostructures , 2018, 2D Materials.

[6]  R. Boichot,et al.  Chalcogen Precursor Effect on Cold-Wall Gas-Source Chemical Vapor Deposition Growth of WS2 , 2018, Crystal Growth & Design.

[7]  D. Geohegan,et al.  In situ edge engineering in two-dimensional transition metal dichalcogenides , 2018, Nature Communications.

[8]  J. Robinson Perspective: 2D for beyond CMOS , 2018 .

[9]  Chowdhury M. Ashraf,et al.  Defect Design of Two-Dimensional MoS2 Structures by Using a Graphene Layer and Potato Stamp Concept , 2018 .

[10]  Zhenhua Ni,et al.  Two-dimensional transition metal dichalcogenides: interface and defect engineering. , 2018, Chemical Society reviews.

[11]  Xiao Zhang,et al.  Novel structured transition metal dichalcogenide nanosheets. , 2018, Chemical Society reviews.

[12]  Brian M. Bersch,et al.  Tuning the Electronic and Photonic Properties of Monolayer MoS2 via In Situ Rhenium Substitutional Doping , 2018 .

[13]  Rajiv K. Kalia,et al.  Chemical Vapor Deposition Synthesis of MoS2 Layers from the Direct Sulfidation of MoO3 Surfaces Using Reactive Molecular Dynamics Simulations , 2018 .

[14]  Andreas Hirsch,et al.  Post‐Graphene 2D Chemistry: The Emerging Field of Molybdenum Disulfide and Black Phosphorus Functionalization , 2018, Angewandte Chemie.

[15]  A. Vescan,et al.  Metalorganic Vapor-Phase Epitaxy Growth Parameters for Two-Dimensional MoS2 , 2018, Journal of Electronic Materials.

[16]  Christopher M. Smyth,et al.  Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors. , 2018, ACS nano.

[17]  Gwo-Ching Wang,et al.  Diffusion-Controlled Epitaxy of Large Area Coalesced WSe2 Monolayers on Sapphire. , 2018, Nano letters.

[18]  Xuexia He,et al.  Production Methods of Van der Waals Heterostructures Based on Transition Metal Dichalcogenides , 2018 .

[19]  Christopher M. Smyth,et al.  Covalent nitrogen doping in molecular beam epitaxy-grown and bulk WSe2 , 2018 .

[20]  K. Nagashio,et al.  Hydrogen-Assisted Epitaxial Growth of Monolayer Tungsten Disulfide and Seamless Grain Stitching , 2018 .

[21]  Yan Xin,et al.  One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy , 2018, Nature.

[22]  H. Terrones,et al.  Resonant Raman and Exciton Coupling in High-Quality Single Crystals of Atomically Thin Molybdenum Diselenide Grown by Vapor-Phase Chalcogenization. , 2018, ACS nano.

[23]  Eric Pop,et al.  Studies of two-dimensional h-BN and MoS2 for potential diffusion barrier application in copper interconnect technology , 2017, npj 2D Materials and Applications.

[24]  P. Schuck,et al.  Deconvoluting the Photonic and Electronic Response of 2D Materials: The Case of MoS2 , 2017, Scientific Reports.

[25]  S. Fullerton‐Shirey,et al.  Properties of synthetic epitaxial graphene/molybdenum disulfide lateral heterostructures , 2017 .

[26]  Moon J. Kim,et al.  Defects and Surface Structural Stability of MoTe2 Under Vacuum Annealing. , 2017, ACS nano.

[27]  Artur R. Davoyan,et al.  Van der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook , 2017, 1710.08917.

[28]  E. Reed,et al.  Structural phase transition in monolayer MoTe2 driven by electrostatic doping , 2017, Nature.

[29]  Moon J. Kim,et al.  Nucleation and growth of WSe2: enabling large grain transition metal dichalcogenides , 2017 .

[30]  L. Cavallo,et al.  Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition-Metal Dichalcogenides. , 2017, ACS nano.

[31]  P. Hurley,et al.  Probing Interface Defects in Top-Gated MoS2 Transistors with Impedance Spectroscopy. , 2017, ACS applied materials & interfaces.

[32]  C. Lane,et al.  Tunable and laser-reconfigurable 2D heterocrystals obtained by epitaxial stacking of crystallographically incommensurate Bi2Se3 and MoS2 atomic layers , 2017, Science Advances.

[33]  R. Wallace,et al.  Computational Study of MoS2/HfO2 Defective Interfaces for Nanometer-Scale Electronics , 2017, ACS omega.

[34]  K. Thygesen Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures , 2017 .

[35]  P. Ajayan,et al.  Layer dependence of the electronic band alignment of few-layer Mo S 2 on Si O 2 measured using photoemission electron microscopy , 2017 .

[36]  Yongli Gao,et al.  2D MoS2 Neuromorphic Devices for Brain-Like Computational Systems. , 2017, Small.

[37]  Moon J. Kim,et al.  New Mo6Te6 Sub‐Nanometer‐Diameter Nanowire Phase from 2H‐MoTe2 , 2017, Advanced materials.

[38]  G. Duscher,et al.  Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe2 , 2017 .

[39]  Craig J. Neal,et al.  Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling , 2017 .

[40]  C. Stampfer,et al.  Large-area MoS2 deposition via MOVPE , 2017 .

[41]  Saptarshi Das,et al.  The Prospect of Two-Dimensional Heterostructures: A Review of Recent Breakthroughs , 2017, IEEE Nanotechnology Magazine.

[42]  C. Jin,et al.  Atomic Defects in Two‐Dimensional Materials: From Single‐Atom Spectroscopy to Functionalities in Opto‐/Electronics, Nanomagnetism, and Catalysis , 2017, Advanced materials.

[43]  Deji Akinwande,et al.  Recent development of two-dimensional transition metal dichalcogenides and their applications , 2017 .

[44]  K. Thygesen,et al.  Band structure engineering in van der Waals heterostructures via dielectric screening: the GΔW method , 2017 .

[45]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[46]  J. Lyu,et al.  Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications. , 2017, Biosensors & bioelectronics.

[47]  T. A. Silva,et al.  The application of graphene for in vitro and in vivo electrochemical biosensing. , 2017, Biosensors & bioelectronics.

[48]  Saptarshi Das,et al.  Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in MoS2 Transistors. , 2017, ACS nano.

[49]  Robert M. Wallace,et al.  W Te2 thin films grown by beam-interrupted molecular beam epitaxy , 2017 .

[50]  J. Redwing,et al.  Controlled synthesis of 2D transition metal dichalcogenides: from vertical to planar MoS2 , 2017 .

[51]  J. M. Kikkawa,et al.  Large-area synthesis of high-quality monolayer 1T’-WTe2 flakes , 2017, 2d materials.

[52]  Yuanxi Wang,et al.  ReaxFF Reactive Force-Field Study of Molybdenum Disulfide (MoS2). , 2017, The journal of physical chemistry letters.

[53]  H. Nalwa,et al.  Atomically Thin-Layered Molybdenum Disulfide (MoS2) for Bulk-Heterojunction Solar Cells. , 2017, ACS applied materials & interfaces.

[54]  E. Reed,et al.  Chemical Vapor Deposition Growth of Few-Layer MoTe2 in the 2H, 1T', and 1T Phases: Tunable Properties of MoTe2 Films. , 2017, ACS nano.

[55]  Do Young Noh,et al.  Molecular beam epitaxy of large-area SnSe2 with monolayer thickness fluctuation , 2016 .

[56]  Aaron M. Lindenberg,et al.  2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications , 2016 .

[57]  Gautam Gupta,et al.  Charge transfer in crystalline germanium/monolayer MoS2 heterostructures prepared by chemical vapor deposition. , 2016, Nanoscale.

[58]  Khairul Alam,et al.  Uniform Benchmarking of Low-Voltage van der Waals FETs , 2016, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[59]  T. Jackson,et al.  Influence of Carbon in Metalorganic Chemical Vapor Deposition of Few-Layer WSe2 Thin Films , 2016, Journal of Electronic Materials.

[60]  M. Terrones,et al.  Spontaneous Formation of Atomically Thin Stripes in Transition Metal Dichalcogenide Monolayers. , 2016, Nano letters.

[61]  Jared P. Ness,et al.  Fabrication and utility of a transparent graphene neural electrode array for electrophysiology, in vivo imaging, and optogenetics , 2016, Nature Protocols.

[62]  Pinshane Y. Huang,et al.  Engineering the Structural and Electronic Phases of MoTe2 through W Substitution. , 2016, Nano letters.

[63]  R. Wallace,et al.  Atomically-thin layered films for device applications based upon 2D TMDC materials , 2016 .

[64]  Kenji Watanabe,et al.  Molecular beam epitaxy growth of monolayer niobium diselenide flakes , 2016 .

[65]  R. Wallace,et al.  Surface Analysis of WSe2 Crystals: Spatial and Electronic Variability. , 2016, ACS applied materials & interfaces.

[66]  Thuc Hue Ly,et al.  Vertically Conductive MoS2 Spiral Pyramid , 2016, Advanced materials.

[67]  A. Dimoulas,et al.  Molecular beam epitaxy of thin HfTe2 semimetal films , 2016, 1608.07114.

[68]  Zi-kui Liu,et al.  Lateral Versus Vertical Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Thermodynamic Insight into MoS2. , 2016, Nano letters.

[69]  A. V. van Duin,et al.  Atomistic-Scale Simulations of Defect Formation in Graphene under Noble Gas Ion Irradiation. , 2016, ACS nano.

[70]  Moon J. Kim,et al.  Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure. , 2016, Nano letters.

[71]  B. Sumpter,et al.  Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe2-x Crystals. , 2016, Nano letters.

[72]  D. Geohegan,et al.  Isoelectronic Tungsten Doping in Monolayer MoSe2 for Carrier Type Modulation , 2016, Advanced materials.

[73]  Xin Chen,et al.  Functionalization of Two‐Dimensional Transition‐Metal Dichalcogenides , 2016, Advanced materials.

[74]  Yong-Wei Zhang,et al.  Engineering Substrate Interactions for High Luminescence Efficiency of Transition‐Metal Dichalcogenide Monolayers , 2016 .

[75]  Aaswath Raman,et al.  Roadmap on optical energy conversion , 2016 .

[76]  Kyeongjae Cho,et al.  Controlling nucleation of monolayer WSe2 during metal-organic chemical vapor deposition growth , 2016 .

[77]  M. Terrones,et al.  Defect engineering of two-dimensional transition metal dichalcogenides , 2016 .

[78]  V. Meunier,et al.  Width and Crystal Orientation Dependent Band Gap Renormalization in Substrate-Supported Graphene Nanoribbons. , 2016, The journal of physical chemistry letters.

[79]  Moon J. Kim,et al.  Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy , 2016 .

[80]  Miaofang Chi,et al.  Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy , 2016, Science Advances.

[81]  Xiaomeng Fan,et al.  Ferromagnetism in Transitional Metal-Doped MoS2 Monolayer , 2016, Nanoscale Research Letters.

[82]  P. Taheri,et al.  Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides. , 2016, Nano letters.

[83]  S. Banerjee,et al.  Structural and Electrical Properties of MoTe2 and MoSe2 Grown by Molecular Beam Epitaxy. , 2016, ACS applied materials & interfaces.

[84]  Sudhir B. Kylasa,et al.  The ReaxFF reactive force-field: development, applications and future directions , 2016 .

[85]  Arnolds Ubelis,et al.  Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology , 2016, Sensors.

[86]  Jian Zhen Ou,et al.  Biosensors Based on Two-Dimensional MoS2 , 2016 .

[87]  I. Grigorieva,et al.  Superconductivity in Potassium-Doped Metallic Polymorphs of MoS2. , 2015, Nano letters.

[88]  D. Costanzo,et al.  Gate-induced superconductivity in atomically thin MoS2 crystals. , 2015, Nature nanotechnology.

[89]  D. Chi,et al.  CVD Growth of MoS2‐based Two‐dimensional Materials , 2015 .

[90]  E. Yablonovitch,et al.  Near-unity photoluminescence quantum yield in MoS2 , 2015, Science.

[91]  M. Batzill,et al.  Molecular beam epitaxy of the van der Waals heterostructure MoTe2 on MoS2: phase, thermal, and chemical stability , 2015 .

[92]  Bumsu Lee,et al.  Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice. , 2015, Nano letters.

[93]  Dorian Liepmann,et al.  Graphene–protein field effect biosensors: glucose sensing ☆ , 2015 .

[94]  Shoji Yoshida,et al.  Microscopic basis for the band engineering of Mo1−xWxS2-based heterojunction , 2015, Scientific Reports.

[95]  Zhihao Yu,et al.  Realization of Room‐Temperature Phonon‐Limited Carrier Transport in Monolayer MoS2 by Dielectric and Carrier Screening , 2015, Advanced materials.

[96]  T. Luo,et al.  Unusual isotope effect on thermal transport of single layer molybdenum disulphide , 2015, 1510.00693.

[97]  S. An,et al.  A Van Der Waals Homojunction: Ideal p–n Diode Behavior in MoSe2 , 2015, Advanced materials.

[98]  Dan Du,et al.  Graphene and graphene-like 2D materials for optical biosensing and bioimaging: a review , 2015 .

[99]  Su-Huai Wei,et al.  Alloy Engineering of Defect Properties in Semiconductors: Suppression of Deep Levels in Transition-Metal Dichalcogenides. , 2015, Physical review letters.

[100]  Jeunghee Park,et al.  Red-to-Ultraviolet Emission Tuning of Two-Dimensional Gallium Sulfide/Selenide. , 2015, ACS nano.

[101]  Moon J. Kim,et al.  Manganese Doping of Monolayer MoS2: The Substrate Is Critical. , 2015, Nano letters.

[102]  M. Bosi Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review , 2015 .

[103]  J. A. Robinson,et al.  In situ degradation studies of two-dimensional WSe₂-graphene heterostructures. , 2015, Nanoscale.

[104]  Suyeon Cho,et al.  Phase patterning for ohmic homojunction contact in MoTe2 , 2015, Science.

[105]  M. Ge,et al.  Step-Edge-Guided Nucleation and Growth of Aligned WSe2 on Sapphire via a Layer-over-Layer Growth Mode. , 2015, ACS nano.

[106]  I. Ivanov,et al.  Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors , 2015, Nature Communications.

[107]  Byoung Hun Lee,et al.  Chemical Sensing of 2D Graphene/MoS2 Heterostructure device. , 2015, ACS applied materials & interfaces.

[108]  B. Hong,et al.  Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials , 2015 .

[109]  Myoung-Jae Lee,et al.  Rotation‐Misfit‐Free Heteroepitaxial Stacking and Stitching Growth of Hexagonal Transition‐Metal Dichalcogenide Monolayers by Nucleation Kinetics Controls , 2015, Advanced materials.

[110]  M. Wanunu,et al.  Direct and Scalable Deposition of Atomically Thin Low-Noise MoS2 Membranes on Apertures. , 2015, ACS nano.

[111]  Yubing Zhou,et al.  Strong Second-Harmonic Generation in Atomic Layered GaSe. , 2015, Journal of the American Chemical Society.

[112]  H. J. Liu,et al.  Molecular-beam epitaxy of monolayer and bilayer WSe2: a scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy , 2015, 1506.04460.

[113]  Kristian Sommer Thygesen,et al.  Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides , 2015, 1506.02841.

[114]  A. Rätz A new diffuse-interface model for step flow in epitaxial growth , 2015 .

[115]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[116]  Felix Wortmann,et al.  Internet of Things , 2015, Bus. Inf. Syst. Eng..

[117]  R. Wallace,et al.  Surface Defects on Natural MoS2. , 2015, ACS applied materials & interfaces.

[118]  R. Norwood,et al.  Investigation of Second- and Third-Harmonic Generation in Few-Layer Gallium Selenide by Multiphoton Microscopy , 2015, Scientific Reports.

[119]  Chongwu Zhou,et al.  Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study. , 2015, ACS nano.

[120]  J. L. Chen,et al.  Molecular-beam epitaxy of monolayer MoSe2: growth characteristics and domain boundary formation , 2015 .

[121]  Sergei V. Kalinin,et al.  Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets , 2015, Advanced Structural and Chemical Imaging.

[122]  J. Furdyna,et al.  Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene , 2015 .

[123]  J. Robinson,et al.  Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. , 2015, ACS nano.

[124]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[125]  Kenji Watanabe,et al.  Direct Growth of Single- and Few-Layer MoS2 on h-BN with Preferred Relative Rotation Angles. , 2015, Nano letters.

[126]  S. Raghavan,et al.  A predictive approach to CVD of crystalline layers of TMDs: the case of MoS2. , 2015, Nanoscale.

[127]  J. Warner,et al.  All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures. , 2015, ACS nano.

[128]  Gautam Gupta,et al.  Chemical Vapor Deposition Synthesized Atomically Thin Molybdenum Disulfide with Optoelectronic-Grade Crystalline Quality. , 2015, ACS nano.

[129]  C. Rao,et al.  Comparative Study of Potential Applications of Graphene, MoS2, and Other Two-Dimensional Materials in Energy Devices, Sensors, and Related Areas. , 2015, ACS applied materials & interfaces.

[130]  A. Akimov,et al.  Large-Scale Computations in Chemistry: A Bird's Eye View of a Vibrant Field. , 2015, Chemical reviews.

[131]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[132]  Dmitri E. Nikonov,et al.  Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits , 2015, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[133]  James E. Evans,et al.  Using molecular dynamics to quantify the electrical double layer and examine the potential for its direct observation in the in-situ TEM , 2015, Advanced Structural and Chemical Imaging.

[134]  Moon J. Kim,et al.  Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures , 2015, Nature Communications.

[135]  L. Kronik,et al.  Reliable Energy Level Alignment at Physisorbed Molecule–Metal Interfaces from Density Functional Theory , 2015, Nano letters.

[136]  Kazuhiro Yamamoto,et al.  Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene. , 2015, ACS applied materials & interfaces.

[137]  Xiaoshuang Chen,et al.  Role of Chemical Potential in Flake Shape and Edge Properties of Monolayer MoS2 , 2015 .

[138]  Linfeng Sun,et al.  Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations , 2015 .

[139]  A. Seabaugh,et al.  Ultimate thin vertical p–n junction composed of two-dimensional layered molybdenum disulfide , 2015, Nature Communications.

[140]  Zhihong Chen,et al.  Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires. , 2015, Nano letters.

[141]  Moon J. Kim,et al.  Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. , 2015, ACS nano.

[142]  Y. Wang,et al.  Observation of piezoelectricity in free-standing monolayer MoS₂. , 2015, Nature nanotechnology.

[143]  Moon J. Kim,et al.  HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. , 2015, ACS nano.

[144]  Guo-Jun Zhang,et al.  A WS2 nanosheet-based platform for fluorescent DNA detection via PNA-DNA hybridization. , 2015, The Analyst.

[145]  R. Feenstra,et al.  Theory of resonant tunneling in bilayer-graphene/hexagonal-boron-nitride heterostructures , 2015, 1501.04646.

[146]  S. Lau,et al.  Layer-dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer GaSe sheets. , 2015, Angewandte Chemie.

[147]  Qiang Sun,et al.  Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire. , 2015, Nano letters.

[148]  J. Furdyna,et al.  Molecular beam epitaxial growth of MoSe2 on graphite, CaF2 and graphene , 2014, 1412.5728.

[149]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[150]  Joonhyung Lee,et al.  Two-dimensional Layered MoS2 Biosensors Enable Highly Sensitive Detection of Biomolecules , 2014, Scientific Reports.

[151]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[152]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[153]  Sefaattin Tongay,et al.  Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. , 2014, Nano letters.

[154]  Wang Yao,et al.  Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. , 2014, Nature materials.

[155]  Hsin-Ying Chiu,et al.  Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. , 2014, ACS nano.

[156]  Moon J. Kim,et al.  Atomically thin heterostructures based on single-layer tungsten diselenide and graphene. , 2014, Nano letters.

[157]  Daniel Wolverson,et al.  Raman spectra of monolayer, few-layer, and bulk ReSe₂: an anisotropic layered semiconductor. , 2014, ACS nano.

[158]  Chongwu Zhou,et al.  Screw-dislocation-driven growth of two-dimensional few-layer and pyramid-like WSe₂ by sulfur-assisted chemical vapor deposition. , 2014, ACS nano.

[159]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[160]  R. McGibbon,et al.  Discovering chemistry with an ab initio nanoreactor , 2014, Nature chemistry.

[161]  Yi-sheng Liu,et al.  Air stable p-doping of WSe2 by covalent functionalization. , 2014, ACS nano.

[162]  Jing Kong,et al.  Dielectric screening of excitons and trions in single-layer MoS2. , 2014, Nano letters.

[163]  S. Louie,et al.  Tunable Magnetism and Half-Metallicity in Hole-Doped Monolayer GaSe. , 2014, Physical review letters.

[164]  Tao Cheng,et al.  Correction to Adaptive Accelerated ReaxFF Reactive Dynamics with Validation from Simulating Hydrogen Combustion , 2014 .

[165]  Kenji Watanabe,et al.  Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. , 2014, ACS nano.

[166]  J. Furdyna,et al.  Atomic Structure of Thin MoSe2 Films Grown by Molecular Beam Epitaxy , 2014 .

[167]  D. Tsai,et al.  Monolayer MoS2 heterojunction solar cells. , 2014, ACS nano.

[168]  J. Jia,et al.  Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations. , 2014, Physical review letters.

[169]  Anlian Pan and Growth of Alloy MoS2xSe2(1—x) Nanosheets with Fully Tunable Chemical Compositions and Optical Properties. , 2014 .

[170]  Sefaattin Tongay,et al.  Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. , 2014, Nano letters.

[171]  B. Yakobson,et al.  Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. , 2014, Nanoscale.

[172]  Jorge O. Sofo,et al.  An Investigation of Machine Learning Methods Applied to Structure Prediction in Condensed Matter , 2014, 1405.3564.

[173]  S. Louie,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[174]  Ning Lu,et al.  Direct synthesis of van der Waals solids. , 2014, ACS nano.

[175]  Yi Liu,et al.  Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. , 2014, Nano letters.

[176]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[177]  C. Battaglia,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[178]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[179]  T. Heinz,et al.  2‐Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1–x)Se2x Monolayers , 2014, Advanced materials.

[180]  X. Duan,et al.  Growth of alloy MoS(2x)Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties. , 2014, Journal of the American Chemical Society.

[181]  Zhiyong Zhang,et al.  Ultrasensitive label-free detection of PNA-DNA hybridization by reduced graphene oxide field-effect transistor biosensor. , 2014, ACS nano.

[182]  P. Ajayan,et al.  Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. , 2014, Nano letters.

[183]  S. Luo,et al.  Effect of Pressure and Temperature on Structural Stability of MoS2 , 2014 .

[184]  R. Yu,et al.  A novel aptameric nanobiosensor based on the self-assembled DNA-MoS2 nanosheet architecture for biomolecule detection. , 2014, Journal of materials chemistry. B.

[185]  Zhi-Xun Shen,et al.  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[186]  John Lowengrub,et al.  Phase-field modeling of two-dimensional crystal growth with anisotropic diffusion. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[187]  Andres Castellanos-Gomez,et al.  The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2 , 2013, Nano Research.

[188]  D. Jena,et al.  Charge Scattering and Mobility in Atomically Thin Semiconductors , 2013, 1310.7157.

[189]  Adri C. T. van Duin,et al.  Connectivity-Based Parallel Replica Dynamics for Chemically Reactive Systems: From Femtoseconds to Microseconds , 2013 .

[190]  Jing Guo,et al.  On Monolayer ${\rm MoS}_{2}$ Field-Effect Transistors at the Scaling Limit , 2013, IEEE Transactions on Electron Devices.

[191]  P. Ajayan,et al.  Giant quasiparticle bandgap modulation in graphene nanoribbons supported on weakly interacting surfaces , 2013, Applied Physics Letters.

[192]  Y. Miyauchi,et al.  Tunable photoluminescence of monolayer MoS₂ via chemical doping. , 2013, Nano letters.

[193]  Hongtao Yuan,et al.  Zeeman-type spin splitting controlled by an electric field , 2013, Nature Physics.

[194]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[195]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[196]  P. Ajayan,et al.  Synthesis and photoresponse of large GaSe atomic layers. , 2013, Nano letters.

[197]  Yi Liu,et al.  Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films , 2013, Scientific Reports.

[198]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[199]  M F Horstemeyer,et al.  An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method. , 2013, Physical chemistry chemical physics : PCCP.

[200]  J. Grossman,et al.  Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. , 2013, Nano letters.

[201]  S. Sanvito,et al.  Ab-initio study on the possible doping strategies for MoS$_2$ monolayers , 2013, 1304.8056.

[202]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2013, ACS nano.

[203]  D. Tománek,et al.  Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. , 2013, ACS nano.

[204]  Chunhai Fan,et al.  Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. , 2013, Journal of the American Chemical Society.

[205]  Jing Guo,et al.  Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. , 2013, Nano letters.

[206]  Mauricio Terrones,et al.  Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides , 2013, Scientific Reports.

[207]  E. Reed,et al.  Flexural electromechanical coupling: a nanoscale emergent property of boron nitride bilayers. , 2013, Nano letters.

[208]  Z. Y. Zhu,et al.  Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems , 2013 .

[209]  Ying-Sheng Huang,et al.  Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers , 2013, Nature Communications.

[210]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[211]  Libai Huang,et al.  Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals. , 2013, ACS nano.

[212]  Pinshane Y. Huang,et al.  Graphene and boron nitride lateral heterostructures for atomically thin circuitry , 2012, Nature.

[213]  R. Venkatasubramanian,et al.  Topological insulator Bi2Te3 fi lms synthesized by metal organic chemical vapor deposition , 2012, 1208.4071.

[214]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[215]  Steven M. Wise,et al.  Phase-field modeling of epitaxial growth: Applications to step trains and island dynamics , 2012 .

[216]  Jing Kong,et al.  Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. , 2012, Nano letters.

[217]  R. Ruoff,et al.  Thermal conductivity of isotopically modified graphene. , 2011, Nature materials.

[218]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[219]  Enge Wang,et al.  Domain Dynamics During Ferroelectric Switching , 2011, Science.

[220]  U. Focken,et al.  Atmospheric Pressure , 2011, IEEE Power and Energy Magazine.

[221]  J. Behler Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. , 2011, Physical chemistry chemical physics : PCCP.

[222]  D. Jena,et al.  Single-particle tunneling in doped graphene-insulator-graphene junctions , 2011, 1108.4881.

[223]  Mihail C. Roco,et al.  Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook , 2011 .

[224]  A. V. van Duin,et al.  Reactive Molecular Dynamics Simulation of Fullerene Combustion Synthesis: ReaxFF vs DFTB Potentials. , 2011, Journal of chemical theory and computation.

[225]  Sergei V. Kalinin,et al.  Watching domains grow: In-situ studies of polarization switching by combined scanning probe and scanning transmission electron microscopy , 2011, 1104.5050.

[226]  A. V. van Duin,et al.  Catalyzed growth of carbon nanotube with definable chirality by hybrid molecular dynamics-force biased Monte Carlo simulations. , 2010, ACS nano.

[227]  A. Boudouvis,et al.  Multiscale modeling in chemical vapor deposition processes: Coupling reactor scale with feature scale computations , 2010 .

[228]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[229]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[230]  Hongtao Yuan,et al.  Liquid-gated interface superconductivity on an atomically flat film. , 2010, Nature materials.

[231]  K. Thygesen,et al.  Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces , 2009, 0910.5304.

[232]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[233]  D. Lu,et al.  Calculation of Quasi-Particle Energies of Aromatic Self-Assembled Monolayers on Au(111). , 2009, Journal of chemical theory and computation.

[234]  S. Louie,et al.  Electronic energy levels of weakly coupled nanostructures: C60-metal interfaces. , 2008, Physical review letters.

[235]  Shing-chung Wang,et al.  Growth of γ-In2Se3 films on Si substrates by metal-organic chemical vapor deposition with different temperatures , 2008 .

[236]  Claire J. Carmalt,et al.  INOR 741-Chemical vapor deposition of WSe2 thin films: Highly hydrophobic sticky surfaces , 2007 .

[237]  H. Chiang,et al.  Growth and properties of single-phase γ-In2Se3 thin films on (1 1 1) Si substrate by AP-MOCVD using H2Se precursor , 2007 .

[238]  I. Parkin,et al.  Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass—highly hydrophobic sticky surfaces , 2006 .

[239]  I. Parkin,et al.  Atmospheric Pressure CVD of Molybdenum Diselenide Films on Glass , 2006 .

[240]  S. Louie,et al.  Renormalization of molecular electronic levels at metal-molecule interfaces. , 2006, Physical review letters.

[241]  I. Parkin,et al.  Atmospheric pressure chemical vapour deposition of NbSe2 thin films on glass , 2006 .

[242]  M. Thewalt,et al.  Isotope effects on the optical spectra of semiconductors , 2005 .

[243]  Emily S. Peters,et al.  Chemical Vapor Deposition of Niobium Disulfide Thin Films , 2004 .

[244]  Emily S. Peters,et al.  Atmospheric pressure chemical vapour deposition of WS2 thin films on glass , 2003 .

[245]  A. Giani,et al.  Growth parameters effect on the electric and thermoelectric characteristics of Bi2Se3 thin films grown by MOCVD system , 2002 .

[246]  Andreas Klein,et al.  Electronic band structure of single-crystal and single-layer WS 2 : Influence of interlayer van der Waals interactions , 2001 .

[247]  M. Traving,et al.  Tracing the valence band maximum during epitaxial growth of HfS2 on WSe2 , 2000 .

[248]  Constantinos Theodoropoulos,et al.  Design of gas inlets for the growth of gallium nitride by metalorganic vapor phase epitaxy , 2000 .

[249]  W. Jaegermann,et al.  Moiré pattern in LEED obtained by van der Waals epitaxy of lattice mismatched WS2/MoTe2(0001) heterointerfaces , 2000 .

[250]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[251]  Alain Giani,et al.  Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD , 1999 .

[252]  I. Parkin,et al.  Atmospheric Pressure CVD of SnS and SnS2 on Glass , 1998 .

[253]  K. Jensen,et al.  MULTISCALE MODELING OF THIN FILM GROWTH , 1998 .

[254]  K. Jensen,et al.  Multiscale modeling of chemical vapor deposition , 1998 .

[255]  A. Voter Parallel replica method for dynamics of infrequent events , 1998 .

[256]  Junghui Chen,et al.  Product and process development using artificial neural‐network model and information analysis , 1998 .

[257]  A. Giani,et al.  MOCVD growth of Bi2Te3 layers using diethyltellurium as a precursor , 1998 .

[258]  A. Barron,et al.  Metal-organic chemical vapor deposition of indium selenide thin films , 1998 .

[259]  A. Koma,et al.  Epitaxial growth of TiSe2 thin films on Se‐terminated GaAs(111)B , 1996 .

[260]  A. Barron MOCVD of Group III Chalcogenides , 1995 .

[261]  T. J. Mountziaris,et al.  Kinetic and Transport Modeling of the Metallorganic Chemical Vapor Deposition of InP from Trimethylindium and Phosphine and Comparison with Experiments , 1995 .

[262]  K. Ueno,et al.  Van der Waals epitaxy on hydrogen-terminated Si(111) surfaces and investigation of its growth mechanism by atomic force microscope , 1995 .

[263]  W. Jaegermann,et al.  Epitaxial films of WS2 by metal organic van der Waals epitaxy (MO-VDWE) , 1994 .

[264]  Mark A. Kramer,et al.  Modeling chemical processes using prior knowledge and neural networks , 1994 .

[265]  Lyle H. Ungar,et al.  A hybrid neural network‐first principles approach to process modeling , 1992 .

[266]  Francis Maury,et al.  Organometallic molecular precursors for low-temperature MOCVD of III-V semiconductors , 1991, Other Conferences.

[267]  K. Ueno,et al.  Heteroepitaxial growth by Van der Waals interaction in one-, two- and three-dimensional materials , 1991 .

[268]  B. Parkinson,et al.  van der Waals epitaxial growth and characterization of MoSe2 thin films on SnS2 , 1990 .

[269]  K. Ueno,et al.  Heteroepitaxial growth of layered transition metal dichalcogenides on sulfur‐terminated GaAs{111} surfaces , 1990 .

[270]  Kazuki Yoshimura,et al.  Ultrasharp interfaces grown with Van der Waals epitaxy , 1986 .

[271]  M. Yoshida,et al.  Mass Spectrometric Study of Ga ( CH 3 ) 3 and Ga ( C 2 H 5 ) 3 Decomposition Reaction in H 2 and N 2 , 1985 .

[272]  K. Sunouchi,et al.  Summary Abstract: Fabrication of ultrathin heterostructures with van der Waals epitaxy , 1985 .

[273]  Kazumasa Sunouchi,et al.  Fabrication and characterization of heterostructures with subnanometer thickness , 1984 .

[274]  Stanley S. Harris Renewable energy. , 1983, Environmental science & technology.

[275]  H. Peek,et al.  A Stagnant Layer Model for the Epitaxial Growth of Silicon from Silane in a Horizontal Reactor , 1970 .

[276]  H. G. Drickamer The Properties of Gases and Liquids. Their Estimation and Correlation. , 1958 .

[277]  R. Scott Molecular theory of gases and liquids , 1955 .

[278]  R. Wallace,et al.  Molecular Beam Epitaxy of Transition Metal Dichalcogenides , 2018 .

[279]  Xiao Zhang,et al.  Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications , 2017 .

[280]  Silvio Simani,et al.  Analysis of Advanced Control Strategies with Application to a Heating Element Model , 2017 .

[281]  Moon J. Kim,et al.  New Mo 6 Te 6 Sub-Nanometer-Diameter Nanowire Phase from 2H-MoTe 2 , 2017 .

[282]  V. A. Jitov,et al.  Metalorganic vapor phase epitaxy growth of ternary tetradymite Bi2Te3−xSex compounds , 2015 .

[283]  Sung-Jin,et al.  Waals Homojunction : Ideal p – n Diode Behavior in MoSe 2 , 2015 .

[284]  M. Arnold,et al.  Experimentally determined model of atmospheric pressure CVD of graphene on Cu , 2014 .

[285]  S. Pennycook,et al.  Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides , 2013 .

[286]  V. Plekhanov,et al.  Isotope - Based Material Science , 2013 .

[287]  Tzu-Ray Shan,et al.  Second-generation charge-optimized many-body potential for Si/SiO2 and amorphous silica , 2010 .

[288]  G. Fan,et al.  A study of the mechanism of the reaction of trimethylgallium with hydrogen selenide , 1999 .

[289]  Rama Venkatasubramanian,et al.  MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications , 1997 .

[290]  G. Fan,et al.  Mass-spectrometric study of the pyrolysis reactions in the MOVPE of Ga2Se3 by in-situ gas sampling , 1996 .

[291]  K. Ueno,et al.  Epitaxial growth of transition metal dichalcogenides on cleaved faces of mica , 1990 .

[292]  A. Koma,et al.  Heteroepitaxy of a two-dimensional material on a three-dimensional material , 1990 .

[293]  Klavs F. Jensen,et al.  In situ mass spectroscopy studies of the decomposition of organometallic arsenic compounds in the presence of Ga(CH3)3 and Ga(C2H5)3 , 1988 .

[294]  Kristof M. Bal,et al.  This item is the archived peer-reviewed author-version of: Merging metadynamics into hyperdynamics : accelerated molecular simulations Reaching time scales from microseconds to seconds , 2022 .